Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Gordon D. Logan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (11): 3388–3399.
Published: 01 November 2011
FIGURES
| View All (5)
Abstract
View article
PDF
The right inferior frontal gyrus (rIFG) has been hypothesized to mediate response inhibition. Typically response inhibition is signaled by an external stop cue, which provides a top–down signal to initiate the process. However, recent behavioral findings suggest that response inhibition can also be triggered automatically by bottom–up processes. In the present study, we evaluated whether rIFG activity would also be observed during automatic inhibition, in which no stop cue was presented and no motor inhibition was actually required. We measured rIFG activation in response to stimuli that were previously associated with stop signals but which required a response on the current trial (reversal trials). The results revealed an increase in rIFG (pars triangularis) activity, suggesting that it can be activated by associations between stimuli and stopping. Moreover, its role in inhibition tasks is not contingent on the presence of an external stop cue. We conclude that rIFG involvement in stopping is consistent with a role in reprogramming of action plans, which may comprise inhibition, and its activity can be triggered through automatic, bottom–up processing.