Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Guido P. H. Band
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (3): 524–539.
Published: 01 March 2011
FIGURES
| View All (7)
Abstract
View article
PDF
The ability to interact with a constantly changing environment requires a balance between maintaining the currently relevant working memory content and being sensitive to potentially relevant new information that should be given priority access to working memory. Mesocortical dopamine projections to frontal brain areas modulate working memory maintenance and flexibility. Recent neurocognitive and neurocomputational work suggests that dopamine release is transiently enhanced by induced positive affect. This ERP study investigated the role of positive affect in different aspects of information processing: in proactive control (context maintenance and updating), reactive control (flexible adaptation to incoming task-relevant information), and evaluative control in an AX -CPT task. Subjects responded to a target probe if it was preceded by a specific cue. Induced positive affect influenced the reactive and evaluative components of control (indexed by the N2 elicited by the target and by the error-related negativity elicited after incorrect responses, respectively), whereas cue-induced proactive preparation and maintenance processes remained largely unaffected (as reflected in the P3b and the contingent negative variation components of the ERP).
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (5): 847–864.
Published: 01 May 2009
Abstract
View article
PDF
People typically respond faster to a stimulus when it is accompanied by a task-irrelevant accessory stimulus presented in another perceptual modality. However, the mechanisms responsible for this accessory-stimulus effect are still poorly understood. We examined the effects of auditory accessory stimulation on the processing of visual stimuli using scalp electrophysiology (Experiment 1) and a diffusion model analysis (Experiment 2). In accordance with previous studies, lateralized readiness potentials indicated that accessory stimuli do not speed motor execution. Surface Laplacians over the motor cortex, however, revealed a bihemispheric increase in motor activation—an effect predicted by nonspecific arousal models. The diffusion model analysis suggested that accessory stimuli do not affect parameters of the decision process, but expedite only the nondecision component of information processing. Consequently, we conclude that accessory stimuli facilitate stimulus encoding. The visual P1 and N1 amplitudes on accessory-stimulus trials were modulated in a way that is consistent with multisensory energy integration, a possible mechanism for this facilitation.