Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
H. Chris Dijkerman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (10): 2149–2166.
Published: 01 September 2021
FIGURES
| View All (5)
Abstract
View article
PDF
The space around our body, the so-called peripersonal space, is where interactions with nearby objects may occur. “Defensive space” and “Reaching space”, respectively, refer to two opposite poles of interaction between our body and the external environment: protecting the body and performing a goal-directed action. Here, we hypothesized that mechanisms underlying these two action spaces are differentially modulated by the valence of visual stimuli, as stimuli with negative valence are more likely to activate protective actions whereas stimuli with positive valence may activate approaching actions. To test whether such distinction in cognitive/evaluative processing exists between Reaching and Defensive spaces, we measured behavioral responses as well as neural activations over sensorimotor cortex using EEG while participants performed several tasks designed to tap into mechanisms underlying either Defensive (e.g., respond to touch) or Reaching space (e.g., estimate whether object is within reaching distance). During each task, pictures of objects with either positive or negative valence were presented at different distances from the participants' body. We found that Defensive space was smaller for positively compared with negatively valenced visual stimuli. Furthermore, sensorimotor cortex activation (reflected in modulation of beta power) during tactile processing was enhanced when coupled with negatively rather than positively valenced visual stimuli regarding Defensive space. On the contrary, both the EEG and behavioral measures capturing the mechanisms underlying Reaching space did not reveal any modulation by valence. Thus, although valence encoding had differential effects on Reaching and Defensive spaces, the distance of the visual stimulus modulated behavioral measures as well as activity over sensorimotor cortex (reflected in modulations of mu power) in a similar way for both types of spaces. Our results are compatible with the idea that Reaching and Defensive spaces involve the same distance-dependent neural representations of sensory input, whereas task goals and stimulus valence (i.e., contextual information) are implemented at a later processing stage and exert an influence on motor output rather than sensory/space encoding.
Journal Articles
Marjolein P. M. Kammers, Lennart Verhagen, H. Chris Dijkerman, Hinze Hogendoorn, Frederique De Vignemont ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (7): 1311–1320.
Published: 01 July 2009
Abstract
View article
PDF
In the rubber hand illusion (RHI), participants incorporate a rubber hand into a mental representation of one's body. This deceptive feeling of ownership is accompanied by recalibration of the perceived position of the participant's real hand toward the rubber hand. Neuroimaging data suggest involvement of the posterior parietal lobule during induction of the RHI, when recalibration of the real hand toward the rubber hand takes place. Here, we used off-line low-frequency repetitive transcranial magnetic stimulation (rTMS) in a double-blind, sham-controlled within-subjects design to investigate the role of the inferior posterior parietal lobule (IPL) in establishing the RHI directly. Results showed that rTMS over the IPL attenuated the strength of the RHI for immediate perceptual body judgments only. In contrast, delayed perceptual responses were unaffected. Furthermore, ballistic action responses as well as subjective self-reports of feeling of ownership over the rubber hand remained unaffected by rTMS over the IPL. These findings are in line with previous research showing that the RHI can be broken down into dissociable bodily sensations. The illusion does not merely affect the embodiment of the rubber hand but also influences the experience and localization of one's own hand in an independent manner. Finally, the present findings concur with a multicomponent model of somatosensory body representations, wherein the IPL plays a pivotal role in subserving perceptual body judgments, but not actions or higher-order affective bodily judgments.