Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Hannah Block
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (4): 636–648.
Published: 01 April 2013
FIGURES
| View All (4)
Abstract
View article
PDF
Posterior parietal cortex is thought to be involved in multisensory processes such as sensory weighting (how much different modalities are represented in sensory integration) and realignment (recalibrating the estimates given by unisensory inputs relative to each other, e.g., when viewing the hand through prisms). Sensory weighting and realignment are biologically independent but can be correlated such that the lowest-weighted modality realigns most. This is important for movement precision because it results in the brain's estimate of hand position favoring the more reliable (higher-weighted) modality. It is unknown if this interaction is an emergent property of separate neural pathways for weighting and realignment or if it is actively mediated by a common substrate. We applied disruptive TMS to the angular gyrus near the intraparietal sulcus (PGa) before participants performed a task with misaligned visual and proprioceptive information about hand position. Visuoproprioceptive weighting and realignment were unaffected. However, the relationship between weighting and realignment, found in control conditions, was absent after TMS in the angular gyrus location. This suggests that a specific region in the angular gyrus actively mediates the interaction between visuoproprioceptive weighting and realignment and may thus play a role in the decreased movement precision associated with posterior parietal lesions.