Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Hans Herzog
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Common and Differential Neural Mechanisms Supporting Imitation of Meaningful and Meaningless Actions
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (9): 1420–1431.
Published: 01 September 2005
Abstract
View article
PDF
Neuropsychological studies indicate that, after brain damage, the ability to imitate meaningful or meaningless actions can be selectively impaired. However, the neural bases supporting the imitation of these two types of action are still poorly understood. Using PET, we investigated in 10 healthy individuals the neural mechanisms of imitating novel, meaningless actions and familiar, meaningful actions. Data were analyzed using SPM99. During imitation, a significant positive correlation (p < .05, corrected) of regional cerebral blood flow with the amount of meaningful actions was observed in the left inferior temporal gyrus only. In contrast, a significant positive correlation (p < .05, corrected) with the amount of meaningless movements was observed in the right parieto-occipital junction. The direct categorical comparison of imitating meaningful (100%) relative to meaningless (100%) actions showed differential increases in neural activity (p < .001, uncorrected) in the left inferior temporal gyrus, the left parahippocampal gyrus, and the left angular gyrus. The reverse categorical comparison of imitating meaningless (100%) relative to meaningful (100%) actions revealed differential increases in neural activity (p < .001, uncorrected) in the superior parietal cortex bilaterally, in the right parieto-occipital junction, in the right occipital-temporal junction (MT, V5), and in the left superior temporal gyrus. Increased neural activity common to imitation of meaningless and meaningful actions compared to action observation was observed in a network of areas known to be involved in imitation of actions including the primary sensorimotor cortex, the supplementary motor area, and the ventral premotor cortex. These results are compatible with the two-route model of action imitation which suggests that there are at least two mechanisms involved in imitation of actions: a direct mechanism transforming a novel action into a motor output, and a semantic mechanism, on the basis of stored memories, that allows reproductions of known actions. Our results indicate that, in addition to shared neural processes, the direct and the semantic mechanisms that underlie action imitation also draw upon differential neural mechanisms. The direct mechanism underlying imitation of meaningless actions differentially involves visuospatial transformation processes as evidenced by activation of areas belonging to the dorsal stream. In contrast, imitation of meaningful actions differentially involves semantic processing as evidenced by activation of areas belonging to the ventral stream.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1999) 11 (4): 383–398.
Published: 01 July 1999
Abstract
View article
PDF
Silent reading and reading aloud of German words and pseudowords were used in a PET study using ( 15 O) butanol to examine the neural correlates of reading and of the phonological conversion of legal letter strings, with or without meaning. The results of 11 healthy, right-handed volunteers in the age range of 25 to 30 years showed activation of the lingual gyri during silent reading in comparison with viewing a fixation cross. Comparisons between the reading of words and pseudo-words suggest the involvement of the middle temporal gyri in retrieving both the phonological and semantic code for words. The reading of pseudowords activates the left inferior frontal gyrus, including the ventral part of Broca's area, to a larger extent than the reading of words. This suggests that this area might be involved in the sublexical conversion of orthographic input strings into phonological output codes. (Pre)motor areas were found to be activated during both silent reading and reading aloud. On the basis of the obtained activation patterns, it is hypothesized that the articulation of high-frequency syllables requires the retrieval of their concomitant articulatory gestures from the SMA and that the articulation of low-frequency syllables recruits the left medial premotor cortex.