Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Hauke R. Heekeren
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (11): 2197–2214.
Published: 01 November 2015
FIGURES
| View All (4)
Abstract
View article
PDF
A crucial aspect of bilingual communication is the ability to identify the language of an input. Yet, the neural and cognitive basis of this ability is largely unknown. Moreover, it cannot be easily incorporated into neuronal models of bilingualism, which posit that bilinguals rely on the same neural substrates for both languages and concurrently activate them even in monolingual settings. Here we hypothesized that bilinguals can employ language-specific sublexical (bigram frequency) and lexical (orthographic neighborhood size) statistics for language recognition. Moreover, we investigated the neural networks representing language-specific statistics and hypothesized that language identity is encoded in distributed activation patterns within these networks. To this end, German–English bilinguals made speeded language decisions on visually presented pseudowords during fMRI. Language attribution followed lexical neighborhood sizes both in first (L1) and second (L2) language. RTs revealed an overall tuning to L1 bigram statistics. Neuroimaging results demonstrated tuning to L1 statistics at sublexical (occipital lobe) and phonological (temporoparietal lobe) levels, whereas neural activation in the angular gyri reflected sensitivity to lexical similarity to both languages. Analysis of distributed activation patterns reflected language attribution as early as in the ventral stream of visual processing. We conclude that in language-ambiguous contexts visual word processing is dominated by L1 statistical structure at sublexical orthographic and phonological levels, whereas lexical search is determined by the structure of both languages. Moreover, our results demonstrate that language identity modulates distributed activation patterns throughout the reading network, providing a key to language identity representations within this shared network.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (4): 571–579.
Published: 01 April 2013
FIGURES
Abstract
View article
PDF
Emerging evidence from animal studies suggests that suboptimal dopamine (DA) modulation may be associated with increased forgetting of episodic information. Extending these observations, we investigated the influence of DA-relevant genes on forgetting in samples of younger ( n = 433, 20–31 years) and older ( n = 690, 59–71 years) adults. The effects of single nucleotide polymorphisms of the DA D2 (DRD2) and D3 (DRD3) receptor genes as well as the DA transporter gene (DAT1; SLC6A3) were examined. Over the course of one week, older adults carrying two or three genotypes associated with higher DA signaling (i.e., higher availability of DA and DA receptors) forgot less pictorial information than older individuals carrying only one or no beneficial genotype. No such genetic effects were found in younger adults. The results are consistent with the view that genetic effects on cognition are magnified in old age. To the best of our knowledge, this is the first report to relate genotypes associated with suboptimal DA modulation to more long-term forgetting in humans. Independent replication studies in other populations are needed to confirm the observed association.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (2): 188–202.
Published: 01 February 2013
FIGURES
| View All (5)
Abstract
View article
PDF
Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (∼100–300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100–125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125–150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175–210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (8): 2030–2045.
Published: 01 August 2011
FIGURES
| View All (6)
Abstract
View article
PDF
Individual differences in working memory (WM) performance have rarely been related to individual differences in the functional responsivity of the WM brain network. By neglecting person-to-person variation, comparisons of network activity between younger and older adults using functional imaging techniques often confound differences in activity with age trends in WM performance. Using functional magnetic resonance imaging, we investigated the relations among WM performance, neural activity in the WM network, and adult age using a parametric letter n -back task in 30 younger adults (21–31 years) and 30 older adults (60–71 years). Individual differences in the WM network's responsivity to increasing task difficulty were related to WM performance, with a more responsive BOLD signal predicting greater WM proficiency. Furthermore, individuals with higher WM performance showed greater change in connectivity between left dorsolateral prefrontal cortex and left premotor cortex across load. We conclude that a more responsive WM network contributes to higher WM performance, regardless of adult age. Our results support the notion that individual differences in WM performance are important to consider when studying the WM network, particularly in age-comparative studies.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (10): 2164–2173.
Published: 01 October 2010
FIGURES
Abstract
View article
PDF
The brain-derived neurotrophic factor (BDNF) plays an important role in activity-dependent synaptic plasticity, which underlies learning and memory. In a sample of 948 younger and older adults, we investigated whether a common Val 66 Met missense polymorphism (rs6265) in the BDNF gene affects the serial position curve—a fundamental phenomenon of associative memory identified by Hermann Ebbinghaus more than a century ago. We found a BDNF polymorphism effect for backward recall in older adults only, with Met-allele carriers (i.e., individuals with reduced BDNF signaling) recalling fewer items than Val homozygotes. This effect was specific to the primacy and middle portions of the serial position curve, where intralist interference and associative demands are especially high. The poorer performance of older Met-allele carriers reflected transposition errors, whereas no genetic effect was found for omissions. These findings indicate that effects of the BDNF polymorphism on episodic memory are most likely to be observed when the associative and executive demands are high. Furthermore, the findings are in line with the hypothesis that the magnitude of genetic effects on cognition is greater when brain resources are reduced, as is the case in old age.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (5): 875–887.
Published: 01 May 2010
FIGURES
| View All (6)
Abstract
View article
PDF
Neurophysiological data suggest that the integration of prior information and incoming sensory evidence represents the neural basis of the decision-making process. Here, we aimed to identify the brain structures involved in the integration of prior information about the average magnitude of a stimulus set and current sensory evidence. Specifically, we investigated whether prior average information already biases vibrotactile decision making during stimulus perception and maintenance before the comparison process. For this purpose, we used a vibrotactile delayed discrimination task and fMRI. At the behavioral level, participants showed the time-order effect. This psychophysical phenomenon has been shown to result from the influence of prior information on the perception of and the memory for currently presented stimuli. Similarly, the fMRI signal reflected the integration of prior information about the average vibration frequency and the currently presented vibration frequency. During stimulus encoding, the fMRI signal in primary and secondary somatosensory (S2) cortex, thalamus, and ventral premotor cortex mirrored an integration process. During stimulus maintenance, only a region in the intraparietal sulcus showed this modulation by prior average information. Importantly, the fMRI signal in S2 and intraparietal sulcus correlated with individual differences in the degree to which participants integrated prior average information. This strongly suggests that these two regions play a pivotal role in the integration process. Taken together, these results support the notion that the integration of current sensory and prior average information is a major feature of how the human brain perceives, remembers, and judges magnitude stimuli.