Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-15 of 15
Heleen A. Slagter
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (10): 2166–2183.
Published: 01 October 2024
FIGURES
| View All (5)
Abstract
View article
PDF
A rapidly growing body of work suggests that visual working memory (VWM) is fundamentally action oriented. Consistent with this, we recently showed that attention is more strongly biased by VWM representations of objects when we plan to act on those objects in the future. Using EEG and eye tracking, here, we investigated neurophysiological correlates of the interactions between VWM and action. Participants ( n = 36) memorized a shape for a subsequent VWM test. At test, a probe was presented along with a secondary object. In the action condition, participants gripped the actual probe if it matched the memorized shape, whereas in the control condition, they gripped the secondary object. Crucially, during the VWM delay, participants engaged in a visual selection task, in which they located a target as fast as possible. The memorized shape could either encircle the target (congruent trials) or a distractor (incongruent trials). Replicating previous findings, we found that eye gaze was biased toward the VWM-matching shape and, importantly, more so when the shape was directly associated with an action plan. Moreover, the ERP results revealed that during the selection task, future action-relevant VWM-matching shapes elicited (1) a stronger Ppc (posterior positivity contralateral), signaling greater attentional saliency; (2) an earlier PD (distractor positivity) component, suggesting faster suppression; (3) a larger inverse (i.e., positive) sustained posterior contralateral negativity in incongruent trials, consistent with stronger suppression of action-associated distractors; and (4) an enhanced response-locked positivity over left motor regions, possibly indicating enhanced inhibition of the response associated with the memorized item during the interim task. Overall, these results suggest that action planning renders objects in VWM more attentionally salient, supporting the notion of selection-for-action in working memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (11): 1693–1715.
Published: 01 November 2023
FIGURES
| View All (10)
Abstract
View article
PDF
There has been a long-lasting debate about whether salient stimuli, such as uniquely colored objects, have the ability to automatically distract us. To resolve this debate, it has been suggested that salient stimuli do attract attention but that they can be suppressed to prevent distraction. Some research supporting this viewpoint has focused on a newly discovered ERP component called the distractor positivity (P D ), which is thought to measure an inhibitory attentional process. This collaborative review summarizes previous research relying on this component with a specific emphasis on how the P D has been used to understand the ability to ignore distracting stimuli. In particular, we outline how the P D component has been used to gain theoretical insights about how search strategy and learning can influence distraction. We also review alternative accounts of the cognitive processes indexed by the P D component. Ultimately, we conclude that the P D component is a useful tool for understanding inhibitory processes related to distraction and may prove to be useful in other areas of study related to cognitive control.
Journal Articles
Fleur L. Bouwer, Johannes J. Fahrenfort, Samantha K. Millard, Niels A. Kloosterman, Heleen A. Slagter
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (6): 990–1020.
Published: 01 June 2023
FIGURES
| View All (9)
Abstract
View article
PDF
The brain uses temporal structure in the environment, like rhythm in music and speech, to predict the timing of events, thereby optimizing their processing and perception. Temporal expectations can be grounded in different aspects of the input structure, such as a regular beat or a predictable pattern. One influential account posits that a generic mechanism underlies beat-based and pattern-based expectations, namely, entrainment of low-frequency neural oscillations to rhythmic input, whereas other accounts assume different underlying neural mechanisms. Here, we addressed this outstanding issue by examining EEG activity and behavioral responses during silent periods following rhythmic auditory sequences. We measured responses outlasting the rhythms both to avoid confounding the EEG analyses with evoked responses, and to directly test whether beat-based and pattern-based expectations persist beyond stimulation, as predicted by entrainment theories. To properly disentangle beat-based and pattern-based expectations, which often occur simultaneously, we used non-isochronous rhythms with a beat, a predictable pattern, or random timing. In Experiment 1 ( n = 32), beat-based expectations affected behavioral ratings of probe events for two beat-cycles after the end of the rhythm. The effects of pattern-based expectations reflected expectations for one interval. In Experiment 2 ( n = 27), using EEG, we found enhanced spectral power at the beat frequency for beat-based sequences both during listening and silence. For pattern-based sequences, enhanced power at a pattern-specific frequency was present during listening, but not silence. Moreover, we found a difference in the evoked signal following pattern-based and beat-based sequences. Finally, we show how multivariate pattern decoding and multiscale entropy—measures sensitive to non-oscillatory components of the signal—can be used to probe temporal expectations. Together, our results suggest that the input structure used to form temporal expectations may affect the associated neural mechanisms. We suggest climbing activity and low-frequency oscillations may be differentially associated with pattern-based and beat-based expectations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (4): 655–674.
Published: 05 March 2022
FIGURES
| View All (6)
Abstract
View article
PDF
Spatial attention enhances sensory processing of goal-relevant information and improves perceptual sensitivity. Yet, the specific neural mechanisms underlying the effects of spatial attention on performance are still contested. Here, we examine different attention mechanisms in spiking deep convolutional neural networks. We directly contrast effects of precision (internal noise suppression) and two different gain modulation mechanisms on performance on a visual search task with complex real-world images. Unlike standard artificial neurons, biological neurons have saturating activation functions, permitting implementation of attentional gain as gain on a neuron's input or on its outgoing connection. We show that modulating the connection is most effective in selectively enhancing information processing by redistributing spiking activity and by introducing additional task-relevant information, as shown by representational similarity analyses. Precision only produced minor attentional effects in performance. Our results, which mirror empirical findings, show that it is possible to adjudicate between attention mechanisms using more biologically realistic models and natural stimuli.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (4): 756–768.
Published: 01 April 2021
FIGURES
| View All (5)
Abstract
View article
PDF
Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (lDLPFC)—a region known to play a key role in working memory and conscious access. Specifically, we examined the effects of tDCS on the magnitude of the “attentional blink” (AB), a deficit in identifying the second of two targets presented in rapid succession. Thirty-four participants performed an AB task before (baseline), during and after 20 min of 1-mA anodal and cathodal tDCS in two separate sessions. On the basis of previous reports linking individual differences in AB magnitude to individual differences in DLPFC activity and on the basis of suggestions that effects of tDCS depend on baseline brain activity levels, we hypothesized that anodal tDCS over lDLPFC would modulate the magnitude of the AB as a function of individual baseline AB magnitude. Behavioral results did not provide support for this hypothesis. At the group level, we also did not observe any significant effects of tDCS, and a Bayesian analysis revealed strong evidence that tDCS to lDLPFC did not affect AB performance. Together, these findings do not support the idea that there is an optimal level of prefrontal cortical excitability for cognitive function. More generally, they add to a growing body of work that challenges the idea that the effects of tDCS can be predicted from baseline levels of behavior.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (7): 1221–1241.
Published: 01 July 2020
FIGURES
| View All (9)
Abstract
View article
PDF
Predicting the timing of incoming information allows the brain to optimize information processing in dynamic environments. Behaviorally, temporal expectations have been shown to facilitate processing of events at expected time points, such as sounds that coincide with the beat in musical rhythm. Yet, temporal expectations can develop based on different forms of structure in the environment, not just the regularity afforded by a musical beat. Little is still known about how different types of temporal expectations are neurally implemented and affect performance. Here, we orthogonally manipulated the periodicity and predictability of rhythmic sequences to examine the mechanisms underlying beat-based and memory-based temporal expectations, respectively. Behaviorally and using EEG, we looked at the effects of beat-based and memory-based expectations on auditory processing when rhythms were task-relevant or task-irrelevant. At expected time points, both beat-based and memory-based expectations facilitated target detection and led to attenuation of P1 and N1 responses, even when expectations were task-irrelevant (unattended). For beat-based expectations, we additionally found reduced target detection and enhanced N1 responses for events at unexpected time points (e.g., off-beat), regardless of the presence of memory-based expectations or task relevance. This latter finding supports the notion that periodicity selectively induces rhythmic fluctuations in neural excitability and furthermore indicates that, although beat-based and memory-based expectations may similarly affect auditory processing of expected events, their underlying neural mechanisms may be different.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (4): 468–481.
Published: 01 April 2018
FIGURES
| View All (4)
Abstract
View article
PDF
Goal-directed behavior requires control over automatic behavior, for example, when goal-irrelevant information from the environment captures an inappropriate response and conflicts with the correct, goal-relevant action. Neural oscillations in the theta band (∼6 Hz) measured at midfrontal electrodes are thought to form an important substrate of the detection and subsequent resolution of response conflict. Here, we examined the extent to which response conflict and associated theta-band activity depend on the visual stimulus feature dimension that triggers the conflict. We used a feature-based Simon task to manipulate conflict by motion direction and stimulus color. Analyses were focused on individual differences in behavioral response conflict elicited across different stimulus dimensions and their relationship to conflict-related midfrontal theta. We first confirmed the presence of response conflict elicited by task-irrelevant motion and stimulus color, demonstrating the usefulness of our modified version of the Simon task to assess different sensory origins of response conflict. Despite titrating overall task performance, we observed large individual differences in the behavioral manifestations of response conflict elicited by the different visual dimensions. These behavioral conflict effects were mirrored in a dimension-specific relationship with conflict-related midfrontal theta power, such that, for each dimension, individual midfrontal theta power was generally higher when experienced response conflict was high. Finally, exploratory analyses of interregional functional connectivity suggested a role for phase synchronization between frontal and parietal scalp sites in modulating experienced conflict when color was the task-relevant visual dimension. Highlighting the importance of an individual differences approach in cognitive neuroscience, these results reveal large individual differences in experienced response conflict depending on the source of visual interference, which are predicted by conflict-related midfrontal theta power.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (4): 755–768.
Published: 01 April 2017
FIGURES
Abstract
View article
PDF
Transcranial direct current stimulation (tDCS) is a promising tool for neurocognitive enhancement. Several studies have shown that just a single session of tDCS over the left dorsolateral pFC (lDLPFC) can improve the core cognitive function of working memory (WM) in healthy adults. Yet, recent studies combining multiple sessions of anodal tDCS over lDLPFC with verbal WM training did not observe additional benefits of tDCS in subsequent stimulation sessions nor transfer of benefits to novel WM tasks posttraining. Using an enhanced stimulation protocol as well as a design that included a baseline measure each day, the current study aimed to further investigate the effects of multiple sessions of tDCS on WM. Specifically, we investigated the effects of three subsequent days of stimulation with anodal (20 min, 1 mA) versus sham tDCS (1 min, 1 mA) over lDLPFC (with a right supraorbital reference) paired with a challenging verbal WM task. WM performance was measured with a verbal WM updating task (the letter n -back) in the stimulation sessions and several WM transfer tasks (different letter set n -back, spatial n -back, operation span) before and 2 days after stimulation. Anodal tDCS over lDLPFC enhanced WM performance in the first stimulation session, an effect that remained visible 24 hr later. However, no further gains of anodal tDCS were observed in the second and third stimulation sessions, nor did benefits transfer to other WM tasks at the group level. Yet, interestingly, post hoc individual difference analyses revealed that in the anodal stimulation group the extent of change in WM performance on the first day of stimulation predicted pre to post changes on both the verbal and the spatial transfer task. Notably, this relationship was not observed in the sham group. Performance of two individuals worsened during anodal stimulation and on the transfer tasks. Together, these findings suggest that repeated anodal tDCS over lDLPFC combined with a challenging WM task may be an effective method to enhance domain-independent WM functioning in some individuals, but not others, or can even impair WM. They thus call for a thorough investigation into individual differences in tDCS respondence as well as further research into the design of multisession tDCS protocols that may be optimal for boosting cognition across a wide range of individuals.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (12): 1964–1979.
Published: 01 December 2016
FIGURES
| View All (5)
Abstract
View article
PDF
Filter mechanisms that prevent irrelevant information from consuming the limited storage capacity of visual STM are critical for goal-directed behavior. Alpha oscillatory activity has been related to proactive filtering of anticipated distraction. Yet, distraction in everyday life is not always anticipated, necessitating rapid, reactive filtering mechanisms. Currently, the oscillatory mechanisms underlying reactive distractor filtering remain unclear. In the current EEG study, we investigated whether reactive filtering of distractors also relies on alpha-band oscillatory mechanisms and explored possible contributions by oscillations in other frequency bands. To this end, participants performed a lateralized change detection task in which a varying and unpredicted number of distractors were presented both in the relevant hemifield, among targets, and in the irrelevant hemifield. Results showed that, whereas proactive distractor filtering was accompanied by lateralization of alpha-band activity over posterior scalp regions, reactive distractor filtering was not associated with modulations of oscillatory power in any frequency band. Yet, behavioral and post hoc ERP analyses clearly showed that participants selectively encoded relevant information. On the basis of these results, we conclude that reactive distractor filtering may not be realized through local modulation of alpha-band oscillatory activity.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (12): 2382–2393.
Published: 01 December 2015
FIGURES
| View All (5)
Abstract
View article
PDF
Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by anodal transcranial direct current stimulation (tDCS) over left dorsolateral pFC (DLPFC)—a region known to play a key role in working memory and conscious access. Specifically, we examined the effects of tDCS on the magnitude of the so-called “attentional blink” (AB), a deficit in identifying the second of two targets presented in rapid succession. Thirty-four participants performed a standard AB task before (baseline), during, and after 20 min of 1-mA anodal and cathodal tDCS in two separate sessions. On the basis of previous reports linking individual differences in AB magnitude to individual differences in DLPFC activity and on suggestions that effects of tDCS depend on baseline brain activity levels, we hypothesized that anodal tDCS over left DLPFC would modulate the magnitude of the AB as a function of individual baseline AB magnitude. Indeed, individual differences analyses revealed that anodal tDCS decreased the AB in participants with a large baseline AB but increased the AB in participants with a small baseline AB. This effect was only observed during (but not after) stimulation, was not found for cathodal tDCS, and could not be explained by regression to the mean. Notably, the effects of tDCS were not apparent at the group level, highlighting the importance of taking individual variability in performance into account when evaluating the effectiveness of tDCS. These findings support the idea that left DLPFC plays a critical role in the AB and in conscious access more generally. They are also in line with the notion that there is an optimal level of prefrontal activity for cognitive function, with both too little and too much activity hurting performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (5): 1039–1048.
Published: 01 May 2014
FIGURES
Abstract
View article
PDF
Humans show consistent differences in the extent to which their behavior reflects a bias toward appetitive approach-related behavior or avoidance of aversive stimuli [Elliot, A. J. Approach and avoidance motivation. In A. J. Elliot (Ed.), Handbook of approach and avoidance motivation (pp. 3–14). New York: Psychology Press, 2008]. We examined the hypothesis that in healthy participants this motivational bias (assessed by self-report and by a probabilistic learning task that allows direct comparison of the relative sensitivity to reward and punishment) reflects lateralization of dopamine signaling. Using [F-18]fallypride to measure D2/D3 binding, we found that self-reported motivational bias was predicted by the asymmetry of frontal D2 binding. Similarly, striatal and frontal asymmetries in D2 dopamine receptor binding, rather than absolute binding levels, predicted individual differences in learning from reward versus punishment. These results suggest that normal variation in asymmetry of dopamine signaling may, in part, underlie human personality and cognition.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (9): 1932–1940.
Published: 01 September 2012
FIGURES
| View All (5)
Abstract
View article
PDF
Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (11): 3576–3585.
Published: 01 November 2011
FIGURES
Abstract
View article
PDF
The attentional blink (AB)—a deficit in reporting the second of two target stimuli presented in close succession in a rapid sequence of distracters—has been related to processing limitations in working memory. Given that dopamine (DA) plays a crucial role working memory, the present study tested whether individual differences in the size of the AB can be predicted by differences in genetic predisposition related to the efficiency of dopaminergic pathways. Polymorphisms related to mesocortical and nigrostriatal dopaminergic pathways were considered, as well as polymorphisms related to norepinephrine (NE), a transmitter system that has also been suspected to play a role in the AB. In a sample of 157 healthy adults, we studied the dependency of the individual magnitude of the AB and the C957T polymorphism at the DRD2 gene (associated with striatal DA/D2 receptors), the DARPP32 polymorphism (associated with striatal DA/D1), the COMT Val 158 Met polymorphism (associated with frontal DA), DBH444 g/a and DBH5′-ins/del polymorphisms (polymorphisms strongly correlated with DA beta hydroxylase, the enzyme catalyzing the DA–NE conversion) and NET T-182C (a polymorphism related to the NE transporter). DRD2 C957T T/T homozygotes showed a significantly smaller AB, whereas polymorphisms associated with frontal DA and NE were unrelated to performance. This outcome pattern suggests a crucial role of the nigrostriatal dopaminergic pathway and of nigrostriatal D2 receptors, in particular, in the management of attentional resources.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (8): 1536–1549.
Published: 01 August 2009
Abstract
View article
PDF
The information processing capacity of the human mind is limited, as is evidenced by the attentional blink—a deficit in identifying the second of two targets (T1 and T2) presented in close succession. This deficit is thought to result from an overinvestment of limited resources in T1 processing. We previously reported that intensive mental training in a style of meditation aimed at reducing elaborate object processing, reduced brain resource allocation to T1, and improved T2 accuracy [Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J., et al. Mental training affects distribution of limited brain resources. PloS Biology, 5, e138, 2007]. Here we report EEG spectral analyses to examine the possibility that this reduction in elaborate T1 processing rendered the system more available to process new target information, as indexed by T2-locked phase variability. Intensive mental training was associated with decreased cross-trial variability in the phase of oscillatory theta activity after successfully detected T2s, in particular, for those individuals who showed the greatest reduction in brain resource allocation to T1. These data implicate theta phase locking in conscious target perception, and suggest that after mental training the cognitive system is more rapidly available to process new target information. Mental training was not associated with changes in the amplitude of T2-induced responses or oscillatory activity before task onset. In combination, these findings illustrate the usefulness of systematic mental training in the study of the human mind by revealing the neural mechanisms that enable the brain to successfully represent target information.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (6): 730–743.
Published: 15 August 2001
Abstract
View article
PDF
Behavioral studies have shown that consistent practice of a cognitive task can increase the speed of performance and reduce variability of responses and error rate, reflecting a shift from controlled to automatic processing. This study examines how the shift from controlled to automatic processing changes brain activity. A verbal Sternberg task was used with continuously changing targets (novel task, NT) and with constant, practiced targets (practiced task, PT). NT and PT were presented in a blocked design and contrasted to a choice reaction time (RT) control task (CT) to isolate working memory (WM)-related activity. The three-dimensional (3-D) PRESTO functional magnetic resonance imaging (fMRI) sequence was used to measure hemodynamic responses. Behavioral data revealed that task processing became automated after practice, as responses were faster, less variable, and more accurate. This was accompanied specifically by a decrease in activation in regions related to WM (bilateral but predominantly left dorsolateral prefrontal cortex (DLPFC), right superior frontal cortex (SFC), and right frontopolar area) and the supplementary motor area. Results showed no evidence for a shift of foci of activity within or across regions of the brain. The findings have theoretical implications for understanding the functional anatomical substrates of automatic and controlled processing, indicating that these types of information processing have the same functional anatomical substrate, but differ in efficiency. In addition, there are practical implications for interpreting activity as a measure for task performance, such as in patient studies. Whereas reduced activity can reflect poor performance if a task is not sensitive to practice effects, it can reflect good performance if a task is sensitive to practice effects.