Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-8 of 8
Helen Neville
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (7): 1037–1048.
Published: 01 July 2013
FIGURES
| View All (4)
Abstract
View article
PDF
We used electrophysiology to determine the time course and distribution of neural activation during an English word rhyme task in hearing and congenitally deaf adults. Behavioral performance by hearing participants was at ceiling and their ERP data replicated two robust effects repeatedly observed in the literature. First, a sustained negativity, termed the contingent negative variation, was elicited following the first stimulus word. This negativity was asymmetric, being more negative over the left than right sites. The second effect we replicated in hearing participants was an enhanced negativity (N450) to nonrhyming second stimulus words. This was largest over medial, parietal regions of the right hemisphere. Accuracy on the rhyme task by the deaf group as a whole was above chance level, yet significantly poorer than hearing participants. We examined only ERP data from deaf participants who performed the task above chance level ( n = 9). We observed indications of subtle differences in ERP responses between deaf and hearing groups. However, overall the patterns in the deaf group were very similar to that in the hearing group. Deaf participants, just as hearing participants, showed greater negativity to nonrhyming than rhyming words. Furthermore the onset latency of this effect was the same as that observed in hearing participants. Overall, the neural processes supporting explicit phonological judgments are very similar in deaf and hearing people, despite differences in the modality of spoken language experience. This supports the suggestion that phonological processing is to a large degree amodal or supramodal.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (6): 936–951.
Published: 01 June 2013
FIGURES
| View All (5)
Abstract
View article
PDF
In contrast to native language acquisition, adult second-language (L2) acquisition occurs under highly variable learning conditions. Although most adults acquire their L2 at least partially through explicit instruction, as in a classroom setting, many others acquire their L2 primarily through implicit exposure, as is typical of an immersion environment. Whether these differences in acquisition environment play a role in determining the neural mechanisms that are ultimately recruited to process L2 grammar has not been well characterized. This study investigated this issue by comparing the ERP response to novel L2 syntactic rules acquired under conditions of implicit exposure and explicit instruction, using a novel laboratory language-learning paradigm. Native speakers tested on these stimuli showed a biphasic response to syntactic violations, consisting of an earlier negativity followed by a later P600 effect. After merely an hour of training, both implicitly and explicitly trained learners who were capable of detecting grammatical violations also elicited P600 effects. In contrast, learners who were unable to discriminate between grammatically correct and incorrect sentences did not show significant P600 effects. The magnitude of the P600 effect was found to correlate with learners' behavioral proficiency. Behavioral measures revealed that successful learners from both the implicit and explicit groups gained explicit, verbalizable knowledge about the L2 grammar rules. Taken together, these results indicate that late, controlled mechanisms indexed by the P600 play a crucial role in processing a late-learned L2 grammar, regardless of training condition. These findings underscore the remarkable plasticity of later, attention-dependent processes and their importance in lifelong learning.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (11): 3181–3196.
Published: 01 November 2011
FIGURES
| View All (6)
Abstract
View article
PDF
The vast majority of word meanings are learned simply by extracting them from context rather than by rote memorization or explicit instruction. Although this skill is remarkable, little is known about the brain mechanisms involved. In the present study, ERPs were recorded as participants read stories in which pseudowords were presented multiple times, embedded in consistent, meaningful contexts (referred to as meaning condition, M+) or inconsistent, meaningless contexts (M−). Word learning was then assessed implicitly using a lexical decision task and explicitly through recall and recognition tasks. Overall, during story reading, M− words elicited a larger N400 than M+ words, suggesting that participants were better able to semantically integrate M+ words than M− words throughout the story. In addition, M+ words whose meanings were subsequently correctly recognized and recalled elicited a more positive ERP in a later time window compared with M+ words whose meanings were incorrectly remembered, consistent with the idea that the late positive component is an index of encoding processes. In the lexical decision task, no behavioral or electrophysiological evidence for implicit priming was found for M+ words. In contrast, during the explicit recognition task, M+ words showed a robust N400 effect. The N400 effect was dependent upon recognition performance, such that only correctly recognized M+ words elicited an N400. This pattern of results provides evidence that the explicit representations of word meanings can develop rapidly, whereas implicit representations may require more extensive exposure or more time to emerge.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (11): 2514–2529.
Published: 01 November 2010
FIGURES
| View All (10)
Abstract
View article
PDF
An important question in the study of language is to what degree semantic and syntactic processes are automatic or controlled. This study employed an attentional blink (AB) paradigm to manipulate awareness in the processing of target words in order to assess automaticity in semantic and syntactic processing. In the semantic block, targets occurring both within and outside the AB period elicited an N400. However, N400 amplitude was significantly reduced during the AB period, and missed targets did not elicit an N400. In the syntactic block, ERPs to targets occurring outside the AB period revealed a late negative syntactic incongruency effect, whereas ERPs to targets occurring within the AB period showed no effect of incongruency. The semantic results support the argument that the N400 primarily indexes a controlled, postlexical process. Syntactic findings suggest that the ERP response to some syntactic violations depends on awareness and availability of attentional resources.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (5): 701–714.
Published: 01 May 2006
Abstract
View article
PDF
We examined the hypothesis that aspects of processing that are most modifiable by experience (i.e., “plastic”) display the most vulnerability in developmental disorders and the most compensatory enhancement after sensory deprivation. A large literature reports that motion processing and magnocellular visual function is selectively deficient in dyslexia. A smaller literature reports enhancements in such functions in deaf individuals. However, studies with dyslexic and deaf individuals have used different experimental paradigms to assess visual function, and no research has yet examined both sides of modifiability (i.e., enhancements and deficits) using the same experimental paradigm. In the present research, visual function was compared in dyslexic ( n = 15), deaf ( n = 17), and control adults by using automated peripheral kinetic and foveal static perimetry. In the kinetic perimetry task, the dyslexic group showed deficits ( p < .003), whereas the deaf group showed enhancements ( p < .001) for detecting moving light points in the periphery. In the foveal static perimetry task, neither the dyslexic ( p = .866) nor the deaf ( p = .632) group differed significantly from controls in foveal contrast sensitivity thresholds, and no group or individual approached ceiling performance on this task. Taken together, the present data bridge previous literatures and suggest that motion processing tasks are selectively modifiable, either to decrement or enhancement, whereas foveal contrast sensitivity does not differ in dyslexic or deaf groups.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (1): 168–182.
Published: 01 January 2005
Abstract
View article
PDF
In a simple prime–target auditory rhyming event-related potential (ERP) paradigm with adults and 6-, 7-, and 8-year-old children, nonword stimuli (e.g., nin–rin, ked–voo) were used to investigate neurocognitive systems involved in rhyming and their development across the early school years. Even absent semantic content, the typical CNV to primes and late rhyming effect (RE) to targets were evident in all age groups. The RE consisted of a more negative response to nonrhyming targets as compared to rhyming targets over posterior sites, with a reversal of this pattern at lateral anterior sites. The hypothesis that the CNV indexes phonological memory processes was not well supported by correlation analyses conducted with the ERP measures and scores on standardized behavioral tests. However, the onset of the rhyming effect was later in those scoring lower on phonological awareness measures.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (Supplement 1): 47–64.
Published: 01 March 2000
Abstract
View article
PDF
Williams Syndrome (WMS) is a genetically based disorder characterized by pronounced variability in performance across different domains of cognitive functioning. This study examined brain activity linked to face-processing abilities, which are typically spared in individuals with WMS. Subjects watched photographic pairs of upright or inverted faces and indicated if the second face matched or did not match the first face. Results from a previous study with normal adults showed dramatic differences in the timing and distribution of ERP effects linked to recognition of upright and inverted faces. In normal adults, upright faces elicited ERP differences to matched vs. mismatched faces at approximately 320 msec (N320) after the onset of the second stimulus. This “N320” effect was largest over anterior regions of the right hemisphere. In contrast, the mismatch/match effect for inverted faces consisted of a large positive component between 400 and 1000 msec (P500) that was largest over parietal regions and was symmetrical. In contrast to normal adults, WMS subjects showed an N320-mismatch effect for both upright and inverted faces. Additionally, the WMS subjects did not display the N320 right-hemisphere asymmetry observed in the normal adults. WMS subjects also displayed an abnormally small negativity at 100 msec (N100) and an abnormally large negativity at 200 msec (N200) to both upright and inverted faces. This ERP pattern was observed in all subjects with WMS but was not observed in the normal controls. These results may be linked to increased attention to faces in subjects with WMS and might be specific to the disorder. These results were consistent with our ERP studies of language processing in WMS, which suggested abnormal cerebral specialization for spared cognitive functions in individuals with WMS.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1991) 3 (2): 151–165.
Published: 01 April 1991
Abstract
View article
PDF
Theoretical considerations and diverse empirical data from clinical, psycholinguistic, and developmental studies suggest that language comprehension processes are decomposable into separate subsystems, including distinct systems for semantic and grammatical processing. Here we report that event-related potentials (ERPs) to syntactically well-formed but semantically anomalous sentences produced a pattern of brain activity that is distinct in timing and distribution from the patterns elicited by syntactically deviant sentences, and further, that different types of syntactic deviance produced distinct ERP patterns. Forty right-handed young adults read sentences presented at 2 words/sec while ERPs were recorded from over several positions between and within the hemispheres. Half of the sentences were semantically and grammatically acceptable and were controls for the remainder, which contained sentence medial words that violated (1) semantic expectations, (2) phrase structure rules, or (3) WH-movement constraints on Specificity and (4) Subjacency. As in prior research, the semantic anomalies produced a negative potential, N400, that was bilaterally distributed and was largest over posterior regions. The phrase structure violations enhanced the N125 response over anterior regions of the left hemisphere, and elicited a negative response (300-500 msec) over temporal and parietal regions of the left hemisphere. Violations of Specificity constraints produced a slow negative potential, evident by 125 msec, that was also largest over anterior regions of the left hemisphere. Violations of Subjacency constraints elicited a broadly and symmetrically distributed positivity that onset around 200 msec. The distinct timing and distribution of these effects provide biological support for theories that distinguish between these types of grammatical rules and constraints and more generally for the proposal that semantic and grammatical processes are distinct subsystems within the language faculty.