Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Ilke Öztekin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (10): 2238–2250.
Published: 01 October 2010
FIGURES
| View All (8)
Abstract
View article
PDF
Free recall is a fundamental paradigm for studying memory retrieval in the context of minimal cue support. Accordingly, free recall has been extensively studied using behavioral methods. However, the neural mechanisms that support free recall have not been fully investigated due to technical challenges associated with probing individual recall events with neuroimaging methods. Of particular concern is the extent to which the uncontrolled latencies associated with recall events can confer sufficient design efficiency to permit neural activation for individual conditions to be distinguished. The present study sought to rigorously assess the feasibility of testing individual free recall events with fMRI. We used both theoretically and empirically derived free recall latency distributions to generate simulated fMRI data sets and assessed design efficiency across a range of parameters that describe free recall performance and fMRI designs. In addition, two fMRI experiments empirically assessed whether differential neural activation in visual cortex at onsets determined by true free recall performance across different conditions can be resolved. Collectively, these results specify the design and performance parameters that can provide comparable efficiency between free recall designs and more traditional jittered event-related designs. These findings suggest that assessing BOLD response during free recall using fMRI is feasible, under certain conditions, and can serve as a powerful tool in understanding the neural bases of memory search and overt retrieval.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (10): 1967–1979.
Published: 01 October 2009
Abstract
View article
PDF
During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a recognition probe after a short distracter period. We induced semantic PI by using study lists containing words within the same semantic category (e.g., animals). We also measured PI induced by recent study, which should increase episodic familiarity, by comparing recent negative probes (lures studied in previous trial) to distant negative probes (lures that had not been presented within a block). Resolving both types of PI resulted in enhanced activation in LIFG and MTL regions. We propose that the LIFG and the MTL support successful resolution of interference via controlled retrieval processes that serve to recover detailed episodic (e.g., list-specific or source) information: Specifically, the data suggest that BOLD activation in the LIFG reflects the deployment of controlled retrieval operations, regardless of whether the retrieval attempt succeeds in recovering the target information, whereas MTL activation specifically reflects access to relevant episodic information that serves to successfully resolve PI.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (3): 581–593.
Published: 01 March 2009
Abstract
View article
PDF
Functional magnetic resonance imaging was used to identify regions involved in working memory (WM) retrieval. Neural activation was examined in two WM tasks: an item recognition task, which can be mediated by a direct-access retrieval process, and a judgment of recency task that requires a serial search. Dissociations were found in the activation patterns in the hippocampus and in the left inferior frontal gyrus (LIFG) when the probe contained the most recently studied serial position (where a test probe can be matched to the contents of focal attention) compared to when it contained all other positions (where retrieval is required). The data implicate the hippocampus and the LIFG in retrieval from WM, complementing their established role in long-term memory. Results further suggest that the left posterior parietal cortex (LPPC) supports serial retrieval processes that are often required to recover temporal order information. Together, these data suggest that the LPPC, the LIFG, and the hippocampus collectively support WM retrieval. Critically, the reported findings support accounts that posit a distinction between representations maintained in and outside of focal attention, but are at odds with traditional dual-store models that assume distinct mechanisms for short- and long-term memory representations.