Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Indre V. Viskontas
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (11): 2652–2662.
Published: 01 November 2010
FIGURES
| View All (5)
Abstract
View article
PDF
Studies examining medial temporal lobe (MTL) involvement in memory formation typically assess memory performance after a single, short delay. Thus, the relationship between MTL encoding activity and memory durability over time remains poorly characterized. To explore this relationship, we scanned participants using high-resolution functional imaging of the MTL as they encoded object pairs; using the remember/know paradigm, we then assessed memory performance for studied items both 10 min and 1 week later. Encoding trials were classified as either subsequently recollected across both delays, transiently recollected (i.e., recollected at 10 min but not after 1 week), consistently familiar, or consistently forgotten. Activity in perirhinal cortex (PRC) and a hippocampal subfield comprising the dentate gyrus and CA fields 2 and 3 reflected successful encoding only when items were recollected consistently across both delays. Furthermore, in PRC, encoding activity for items that later were consistently recollected was significantly greater than that for transiently recollected and consistently familiar items. Parahippocampal cortex, in contrast, showed a subsequent memory effect during encoding of items that were recollected after 10 min, regardless of whether they also were recollected after 1 week. These data suggest that MTL subfields contribute uniquely to the formation of memories that endure over time, and highlight a role for PRC in supporting subsequent durable episodic recollection.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (10): 1654–1662.
Published: 01 October 2006
Abstract
View article
PDF
Different structures within the medial-temporal lobe likely make distinct contributions to declarative memory. In particular, several current psychological and computational models of memory predict that the hippocampus and parahippocampal regions play different roles in the formation and retrieval of declarative memories [e.g., Norman, K. A., & O'Reilly, R. C. Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning systems approach. Psychological Review, 110 , 611–646, 2003]. Here, we examined the neuronal firing patterns in these two regions during recognition memory. Recording directly from neurons in humans, we find that cells in both regions respond to novel stimuli with an increase in firing (excitation). However, already on the second presentation of a stimulus, neurons in these regions show very different firing patterns. In the parahippocampal region there is dramatic decrease in the number of cells responding to the stimuli, whereas in the hippocampus there is recruitment of a large subset of neurons showing inhibitory (decrease from baseline firing) responses. These results suggest that inhibition is a mechanism used by cells in the human hippocampus to support sparse coding in mnemonic processing. The findings also provide further evidence for the division of labor in the medial-temporal lobe with respect to declarative memory processes.