Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Irene E. Nagel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (4): 571–579.
Published: 01 April 2013
FIGURES
Abstract
View article
PDF
Emerging evidence from animal studies suggests that suboptimal dopamine (DA) modulation may be associated with increased forgetting of episodic information. Extending these observations, we investigated the influence of DA-relevant genes on forgetting in samples of younger ( n = 433, 20–31 years) and older ( n = 690, 59–71 years) adults. The effects of single nucleotide polymorphisms of the DA D2 (DRD2) and D3 (DRD3) receptor genes as well as the DA transporter gene (DAT1; SLC6A3) were examined. Over the course of one week, older adults carrying two or three genotypes associated with higher DA signaling (i.e., higher availability of DA and DA receptors) forgot less pictorial information than older individuals carrying only one or no beneficial genotype. No such genetic effects were found in younger adults. The results are consistent with the view that genetic effects on cognition are magnified in old age. To the best of our knowledge, this is the first report to relate genotypes associated with suboptimal DA modulation to more long-term forgetting in humans. Independent replication studies in other populations are needed to confirm the observed association.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (8): 2030–2045.
Published: 01 August 2011
FIGURES
| View All (6)
Abstract
View article
PDF
Individual differences in working memory (WM) performance have rarely been related to individual differences in the functional responsivity of the WM brain network. By neglecting person-to-person variation, comparisons of network activity between younger and older adults using functional imaging techniques often confound differences in activity with age trends in WM performance. Using functional magnetic resonance imaging, we investigated the relations among WM performance, neural activity in the WM network, and adult age using a parametric letter n -back task in 30 younger adults (21–31 years) and 30 older adults (60–71 years). Individual differences in the WM network's responsivity to increasing task difficulty were related to WM performance, with a more responsive BOLD signal predicting greater WM proficiency. Furthermore, individuals with higher WM performance showed greater change in connectivity between left dorsolateral prefrontal cortex and left premotor cortex across load. We conclude that a more responsive WM network contributes to higher WM performance, regardless of adult age. Our results support the notion that individual differences in WM performance are important to consider when studying the WM network, particularly in age-comparative studies.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (10): 2164–2173.
Published: 01 October 2010
FIGURES
Abstract
View article
PDF
The brain-derived neurotrophic factor (BDNF) plays an important role in activity-dependent synaptic plasticity, which underlies learning and memory. In a sample of 948 younger and older adults, we investigated whether a common Val 66 Met missense polymorphism (rs6265) in the BDNF gene affects the serial position curve—a fundamental phenomenon of associative memory identified by Hermann Ebbinghaus more than a century ago. We found a BDNF polymorphism effect for backward recall in older adults only, with Met-allele carriers (i.e., individuals with reduced BDNF signaling) recalling fewer items than Val homozygotes. This effect was specific to the primacy and middle portions of the serial position curve, where intralist interference and associative demands are especially high. The poorer performance of older Met-allele carriers reflected transposition errors, whereas no genetic effect was found for omissions. These findings indicate that effects of the BDNF polymorphism on episodic memory are most likely to be observed when the associative and executive demands are high. Furthermore, the findings are in line with the hypothesis that the magnitude of genetic effects on cognition is greater when brain resources are reduced, as is the case in old age.