Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
István Czigler
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (3): 534–550.
Published: 01 March 2024
FIGURES
| View All (4)
Abstract
View article
PDF
In this study, we investigated whether the cognitive system, known to be able to register regular visual event sequences and the violation of these sequences automatically, had the capacity of processing two sequences simultaneously. To this end, we measured the visual mismatch negativity (vMMN) component of ERPs as interwoven event sequences simultaneously presented to the left and right side of the screen. One of the sequences consisted of geometric patterns (diamonds); the other, photographs of human faces. In successive cycles, parts of the stimuli vanished and then re-appeared (the OFF/ON method). The vanishing parts served as either standard (frequently vanishing parts) or infrequent (deviant) events, but these events were task-irrelevant. The 20 adult participants (age 21.40 ± 2.72 years) performed a visual tracking task, with the OFF/ON task being a passive oddball paradigm. According to the results, both OFF and ON events, and both diamond and face stimuli elicited the vMMN component, showing that the system underlying this activity is capable of processing two event sequences if the sequences consist of fairly different kind of objects as stimuli. The sLORETA analysis showed that the source of vMMN was more frequent contralaterally to the deviant event, and the sources comprised loci from ventral and dorsal structures, as well as some anterior loci.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (6): 1124–1139.
Published: 01 June 2010
FIGURES
| View All (5)
Abstract
View article
PDF
For our adaptive behavior in a dynamically changing environment, an essential task of the brain is to automatically encode sequential regularities inherent in the environment into a memory representation. Recent studies in neuroscience have suggested that sequential regularities embedded in discrete sensory events are automatically encoded into a memory representation at the level of the sensory system. This notion is largely supported by evidence from investigations using auditory mismatch negativity (auditory MMN), an event-related brain potential (ERP) correlate of an automatic memory-mismatch process in the auditory sensory system. However, it is still largely unclear whether or not this notion can be generalized to other sensory modalities. The purpose of the present study was to investigate the contribution of the visual sensory system to the automatic encoding of sequential regularities using visual mismatch negativity (visual MMN), an ERP correlate of an automatic memory-mismatch process in the visual sensory system. To this end, we conducted a sequential analysis of visual MMN in an oddball sequence consisting of infrequent deviant and frequent standard stimuli, and tested whether the underlying memory representation of visual MMN generation contains only a sensory memory trace of standard stimuli (trace-mismatch hypothesis) or whether it also contains sequential regularities extracted from the repetitive standard sequence (regularity-violation hypothesis). The results showed that visual MMN was elicited by first deviant (deviant stimuli following at least one standard stimulus), second deviant (deviant stimuli immediately following first deviant), and first standard (standard stimuli immediately following first deviant), but not by second standard (standard stimuli immediately following first standard). These results are consistent with the regularity-violation hypothesis, suggesting that the visual sensory system automatically encodes sequential regularities. In combination with a wide range of auditory MMN studies, the present study highlights the critical role of sensory systems in automatically encoding sequential regularities when modeling the world.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (6): 1179–1188.
Published: 01 June 2010
FIGURES
Abstract
View article
PDF
There is an ongoing debate whether visual object representations can be formed outside the focus of voluntary attention. Recently, implicit behavioral measures suggested that grouping processes can occur for task-irrelevant visual stimuli, thus supporting theories of preattentive object formation (e.g., Lamy, D., Segal, H., & Ruderman, L. Grouping does not require attention. Perception and Psychophysics, 68, 17–31, 2006; Russell, C., & Driver, J. New indirect measures of “inattentive” visual grouping in a change-detection task. Perception and Psychophysics, 67, 606–623, 2005). We developed an ERP paradigm that allows testing for visual grouping when neither the objects nor its constituents are related to the participant's task. Our paradigm is based on the visual mismatch negativity ERP component, which is elicited by stimuli deviating from a regular stimulus sequence even when the stimuli are ignored. Our stimuli consisted of four pairs of colored discs that served as objects. These objects were presented isochronously while participants were engaged in a task related to the continuously presented fixation cross. Occasionally, two color deviances occurred simultaneously either within the same object or across two different objects. We found significant ERP differences for same- versus different-object deviances, supporting the notion that forming visual object representations by grouping can occur outside the focus of voluntary attention. Also our behavioral experiment, in which participants responded to color deviances—thus, this time the discs but, again, not the objects were task relevant—showed that the object status matters. Our results stress the importance of early grouping processes for structuring the perceptual world.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (2): 320–339.
Published: 01 February 2005
Abstract
View article
PDF
We investigated the role of attention in feature binding in the auditory and the visual modality. One auditory and one visual experiment used the mismatch negativity (MMN and vMMN, respectively) event-related potential to index the memory representations created from stimulus sequences, which were either task-relevant and, therefore, attended or task-irrelevant and ignored. In the latter case, the primary task was a continuous demanding within-modality task. The test sequences were composed of two frequently occurring stimuli, which differed from each other in two stimulus features (standard stimuli) and two infrequently occurring stimuli (deviants), which combined one feature from one standard stimulus with the other feature of the other standard stimulus. Deviant stimuli elicited MMN responses of similar parameters across the different attentional conditions. These results suggest that the memory representations involved in the MMN deviance detection response encoded the frequently occurring feature combinations whether or not the test sequences were attended. A possible alternative to the memory-based interpretation of the visual results, the elicitation of the McCollough color-contingent aftereffect, was ruled out by the results of our third experiment. The current results are compared with those supporting the attentive feature integration theory. We conclude that (1) with comparable stimulus paradigms, similar results have been obtained in the two modalities, (2) there exist preattentive processes of feature binding, however, (3) conjoining features within rich arrays of objects under time pressure and/or long-term retention of the feature-conjoined memory representations may require attentive processes.
Journal Articles
Interactions between Transient and Long-Term Auditory Memory as Reflected by the Mismatch Negativity
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1996) 8 (5): 403–415.
Published: 01 September 1996
Abstract
View article
PDF
The mismatch negativity (MMN) event-related potential (ERP) component is elicited by any discriminable change in series of repetitive auditory stimuli. MMN is generated by a process registering the deviation of the incoming stimulus from the trace of the previous repetitive stimulus. Using MMN as a probe into auditory sensory memory, the present study addressed the question of whether the sensory memory representation is formed strictly on the basis of an automatic feature analysis of incoming sensory stimuli or information from long-term memory is also incorporated. Trains of 6 tone bursts (standards with up to 1 deviant per train) separated by 9.5-sec intertrain intervals were presented to subjects performing a visual tracking task and disregarding the auditory stimuli. Trains were grouped into stimulus blocks of 20 trains with a 2-min rest period between blocks. In the Constant-Standard Condition, both standard and deviant stimuli remained fixed across the session, encouraging the formation of a long-term memory representation. To eliminate the carryover of sensory storage from one train to the next, the first 3.6 sec of the intertrain interval was filled with 6 tones of random frequencies. In the Roving-Standard Condition, the standard changed from train to train and the intervening tones were omitted. It was found that MMN was elicited by deviants presented in Position 2 of the trains in the Constant-Standard Condition revealing that a single reminder of the constant standard reactivated the standard-stimulus representation. The MMN amplitude increased across trials within each stimulus block in the Constant- but not in the Roving-Standard Condition, demonstrating long-term learning in that condition (i.e., the standard-stimulus trace indexed by the MMN amplitude benefitted from the presentations of the constant standard in the previous trains). The present results suggest that the transient auditory sensory memory representation underlying the MMN is facilitated by a longer-term representation of the corresponding stimulus.