Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-7 of 7
István Winkler
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (6): 1179–1188.
Published: 01 June 2010
FIGURES
Abstract
View articletitled, Visual Object Representations Can Be Formed outside the Focus of Voluntary Attention: Evidence from Event-related Brain Potentials
View
PDF
for article titled, Visual Object Representations Can Be Formed outside the Focus of Voluntary Attention: Evidence from Event-related Brain Potentials
There is an ongoing debate whether visual object representations can be formed outside the focus of voluntary attention. Recently, implicit behavioral measures suggested that grouping processes can occur for task-irrelevant visual stimuli, thus supporting theories of preattentive object formation (e.g., Lamy, D., Segal, H., & Ruderman, L. Grouping does not require attention. Perception and Psychophysics, 68, 17–31, 2006; Russell, C., & Driver, J. New indirect measures of “inattentive” visual grouping in a change-detection task. Perception and Psychophysics, 67, 606–623, 2005). We developed an ERP paradigm that allows testing for visual grouping when neither the objects nor its constituents are related to the participant's task. Our paradigm is based on the visual mismatch negativity ERP component, which is elicited by stimuli deviating from a regular stimulus sequence even when the stimuli are ignored. Our stimuli consisted of four pairs of colored discs that served as objects. These objects were presented isochronously while participants were engaged in a task related to the continuously presented fixation cross. Occasionally, two color deviances occurred simultaneously either within the same object or across two different objects. We found significant ERP differences for same- versus different-object deviances, supporting the notion that forming visual object representations by grouping can occur outside the focus of voluntary attention. Also our behavioral experiment, in which participants responded to color deviances—thus, this time the discs but, again, not the objects were task relevant—showed that the object status matters. Our results stress the importance of early grouping processes for structuring the perceptual world.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (11): 1704–1713.
Published: 01 November 2005
Abstract
View articletitled, Familiarity Affects the Processing of Task-irrelevant Auditory Deviance
View
PDF
for article titled, Familiarity Affects the Processing of Task-irrelevant Auditory Deviance
The effects of familiarity on auditory change detection on the basis of auditory sensory memory representations were investigated by presenting oddball sequences of sounds while participants ignored the auditory stimuli. Stimulus sequences were composed of sounds that were familiar and sounds that were made unfamiliar by playing the same sounds backward. The roles of frequently presented stimuli (standards) and infrequently presented ones (deviants) were fully crossed. Deviants elicited the mismatch negativity component of the event-related brain potential. We found an enhancement in detecting changes when deviant sounds appeared among familiar standard sounds compared when they were delivered among unfamiliar standards. Familiarity with the deviant sounds also enhanced the change-detection process. We suggest that tuning to familiar items sets up preparatory processes that affect change detection in familiar sound sequences.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (2): 320–339.
Published: 01 February 2005
Abstract
View articletitled, Preattentive Binding of Auditory and Visual Stimulus Features
View
PDF
for article titled, Preattentive Binding of Auditory and Visual Stimulus Features
We investigated the role of attention in feature binding in the auditory and the visual modality. One auditory and one visual experiment used the mismatch negativity (MMN and vMMN, respectively) event-related potential to index the memory representations created from stimulus sequences, which were either task-relevant and, therefore, attended or task-irrelevant and ignored. In the latter case, the primary task was a continuous demanding within-modality task. The test sequences were composed of two frequently occurring stimuli, which differed from each other in two stimulus features (standard stimuli) and two infrequently occurring stimuli (deviants), which combined one feature from one standard stimulus with the other feature of the other standard stimulus. Deviant stimuli elicited MMN responses of similar parameters across the different attentional conditions. These results suggest that the memory representations involved in the MMN deviance detection response encoded the frequently occurring feature combinations whether or not the test sequences were attended. A possible alternative to the memory-based interpretation of the visual results, the elicitation of the McCollough color-contingent aftereffect, was ruled out by the results of our third experiment. The current results are compared with those supporting the attentive feature integration theory. We conclude that (1) with comparable stimulus paradigms, similar results have been obtained in the two modalities, (2) there exist preattentive processes of feature binding, however, (3) conjoining features within rich arrays of objects under time pressure and/or long-term retention of the feature-conjoined memory representations may require attentive processes.
Journal Articles
Grouping of Sequential Sounds—An Event-Related Potential Study Comparing Musicians and Nonmusicians
UnavailablePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (2): 331–338.
Published: 01 March 2004
Abstract
View articletitled, Grouping of Sequential Sounds—An Event-Related Potential Study Comparing Musicians and Nonmusicians
View
PDF
for article titled, Grouping of Sequential Sounds—An Event-Related Potential Study Comparing Musicians and Nonmusicians
It is believed that auditory processes governing grouping and segmentation of sounds are automatic and represent universal aspects of music perception (e.g., they are independent of the listener's musical skill). The present study challenges this view by showing that musicians and nonmusicians differ in their ability to preattentively group consecutive sounds. We measured event-related potentials (ERPs) from professional musicians and nonmusicians who were presented with isochronous tone sequences that they ignored. Four consecutive tones in a sequence could be grouped according to either pitch similarity or good continuation of pitch. Occasionally, the tone-group length was violated by a deviant tone. The mismatch negativity (MMN) was elicited to the deviants in both subject groups when the sounds could be grouped based on pitch similarity. In contrast, MMN was only elicited in musicians when the sounds could be grouped according to good continuation of pitch. These results suggest that some forms of auditory grouping depend on musical skill and that not all aspects of auditory grouping are universal.
Journal Articles
The Role of Large-Scale Memory Organization in the Mismatch Negativity Event-Related Brain Potential
UnavailablePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (1): 59–71.
Published: 01 January 2001
Abstract
View articletitled, The Role of Large-Scale Memory Organization in the Mismatch Negativity Event-Related Brain Potential
View
PDF
for article titled, The Role of Large-Scale Memory Organization in the Mismatch Negativity Event-Related Brain Potential
The mismatch negativity (MMN) component of event-related brain potentials is elicited by infrequent changes in regular acoustic sequences even if the participant is not actively listening to the sound sequence. Therefore, the MMN is assumed to result from a preattentive process in which an incoming sound is checked against the automatically detected regularities of the auditory sequence and is found to violate them. For example, presenting a discriminably different (deviant) sound within the sequence of a repetitive (standard) sound elicits the MMN. In the present article, we tested whether the memory organization of the auditory sequence can affect the preattentive change detection indexed by the MMN. In Experiment 1, trains of six standard tones were presented with a short, 0.5-sec stimulus onset asynchrony (SOA) between tones in the train. This was followed by a variable SOA between the last standard and the deviant tone (the “irregular presentation” condition). Of 12 participants displaying an MMN at the 0.5-sec predeviant SOA, it was elicited by 11 with the 2-sec predeviant SOA, in 5 participants with the 7-sec SOA, and in none with the 10-sec SOA. In Experiment 2, we repeated the 7-sec irregular predeviant SOA condition, along with a “regular presentation” condition in which the SOA between any two tones was 7 sec. MMN was elicited in about half of the participants (9 out of 16) in the irregular presentation condition, whereas in the regular presentation condition, MMN was elicited in all participants. These results cannot be explained on the basis of memory-strength decay but can be interpreted in terms of automatic, auditory preperceptual grouping principles. In the irregular presentation condition, the close grouping of standards may cause them to become irrelevant to the mismatch process when the deviant tone is presented after a long silent break. Because the MMN indexes preattentive auditory processing, the present results provide evidence that large-scale preperceptual organization of auditory events occurs despite attention being directed away from the auditory stimuli.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1998) 10 (5): 590–604.
Published: 01 September 1998
Abstract
View articletitled, Neural Mechanisms of Involuntary Attention to Acoustic Novelty and Change
View
PDF
for article titled, Neural Mechanisms of Involuntary Attention to Acoustic Novelty and Change
Behavioral and event-related brain potential (ERP) measures were used to elucidate the neural mechanisms of involuntary engagement of attention by novelty and change in the acoustic environment. The behavioral measures consisted of the reaction time (RT) and performance accuracy (hit rate) in a forced-choice visual RT task where subjects were to discriminate between odd and even numbers. Each visual stimulus was preceded by an irrelevant auditory stimulus, which was randomly either a “standard” tone (80%), a slightly, higher “deviant” tone (10%), or a natural, “novel” sound (10%). Novel sounds prolonged the RT to successive visual stimuli by 17 msec as compared with the RT to visual stimuli that followed standard tones. Deviant tones, in turn, decreased the hit rate but did not significantly affect the RT. In the ERPs to deviant tones, the mismatch negativity (MMN), peaking at 150 msec, and a second negativity, peaking at 400 msec, could be observed. Novel sounds elicited an enhanced N1, with a probable overlap by the MMN, and a large positive P3a response with two different subcomponents: an early centrally dominant P3a, peaking at 230 msec, and a late P3a, peaking at 315 msec with a right-frontal scalp maximum. The present results suggest the involvement of two different neural mechanisms in triggering involuntary attention to acoustic novelty and change: a transient-detector mechanism activated by novel sounds and reflected in the N1 and a stimulus-change detector mechanism activated by deviant tones and novel sounds and reflected in the MMN. The observed differential distracting effects by slightly deviant tones and widely deviant novel sounds support the notion of two separate mechanisms of involuntary attention.
Journal Articles
Interactions between Transient and Long-Term Auditory Memory as Reflected by the Mismatch Negativity
UnavailablePublisher: Journals Gateway
Journal of Cognitive Neuroscience (1996) 8 (5): 403–415.
Published: 01 September 1996
Abstract
View articletitled, Interactions between Transient and Long-Term Auditory Memory as Reflected by the Mismatch Negativity
View
PDF
for article titled, Interactions between Transient and Long-Term Auditory Memory as Reflected by the Mismatch Negativity
The mismatch negativity (MMN) event-related potential (ERP) component is elicited by any discriminable change in series of repetitive auditory stimuli. MMN is generated by a process registering the deviation of the incoming stimulus from the trace of the previous repetitive stimulus. Using MMN as a probe into auditory sensory memory, the present study addressed the question of whether the sensory memory representation is formed strictly on the basis of an automatic feature analysis of incoming sensory stimuli or information from long-term memory is also incorporated. Trains of 6 tone bursts (standards with up to 1 deviant per train) separated by 9.5-sec intertrain intervals were presented to subjects performing a visual tracking task and disregarding the auditory stimuli. Trains were grouped into stimulus blocks of 20 trains with a 2-min rest period between blocks. In the Constant-Standard Condition, both standard and deviant stimuli remained fixed across the session, encouraging the formation of a long-term memory representation. To eliminate the carryover of sensory storage from one train to the next, the first 3.6 sec of the intertrain interval was filled with 6 tones of random frequencies. In the Roving-Standard Condition, the standard changed from train to train and the intervening tones were omitted. It was found that MMN was elicited by deviants presented in Position 2 of the trains in the Constant-Standard Condition revealing that a single reminder of the constant standard reactivated the standard-stimulus representation. The MMN amplitude increased across trials within each stimulus block in the Constant- but not in the Roving-Standard Condition, demonstrating long-term learning in that condition (i.e., the standard-stimulus trace indexed by the MMN amplitude benefitted from the presentations of the constant standard in the previous trains). The present results suggest that the transient auditory sensory memory representation underlying the MMN is facilitated by a longer-term representation of the corresponding stimulus.