Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
James M. Intriligator
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (8): 1174–1183.
Published: 15 November 2002
Abstract
View article
PDF
Monkey data suggest that of all perceptual abilities, motion perception is the most likely to survive striate damage. The results of studies on motion blindsight in humans, though, are mixed. We used an indirect strategy to examine how responses to visible stimuli were modulated by blind-field stimuli. In a 26-year-old man with focal striate lesions, discrimination of visible optic flow was enhanced about 7% by blind-field flow, even though discrimination of optic flow in the blind field alone (the direct strategy) was at chance. Pursuit of an imagined target using peripheral cues showed reduced variance but not increased gain with blind-field cues. Preceding blind-field prompts shortened reaction times to visible targets by about 10 msec, but there was no attentional crowding of visible stimuli by blind-field distractors. A similar efficacy of indirect blind-field optic flow modulation was found in a second patient with residual vision after focal striate damage, but not in a third with more extensive medial occipito-temporal damage. We conclude that indirect modulatory strategies are more effective than direct forced-choice methods at revealing residual motion perception after focal striate lesions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1992) 4 (1): 96–105.
Published: 01 January 1992
Abstract
View article
PDF
We distinguish between strong and weak cognitive neuropsychology, with the former attempting to provide direct insights into the nature of information processing and the latter having the more modest goal of providing constraints on such theories. We argue that strong cognitive neuropsychology, although possible, is unlikely to succeed and that researchers will fare better by combining behavioral, computational, and neural investigations. Arguments offered by Caramazza (1992) in defense of strong neuropsychology are analyzed, and examples are offered to illustrate the power of alternative points of view.