Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Janet H. Hsiao
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (7): 998–1007.
Published: 01 July 2013
FIGURES
| View All (7)
Abstract
View article
PDF
Hemispheric asymmetry in the processing of local and global features has been argued to originate from differences in frequency filtering in the two hemispheres, with little neurophysiological support. Here we test the hypothesis that this asymmetry takes place at an encoding stage beyond the sensory level, due to asymmetries in anatomical connections within each hemisphere. We use two simple encoding networks with differential connection structures as models of differential encoding in the two hemispheres based on a hypothesized generalization of neuroanatomical evidence from the auditory modality to the visual modality: The connection structure between columns is more distal in the language areas of the left hemisphere and more local in the homotopic regions in the right hemisphere. We show that both processing differences and differential frequency filtering can arise naturally in this neurocomputational model with neuroanatomically inspired differences in connection structures within the two model hemispheres, suggesting that hemispheric asymmetry in the processing of local and global features may be due to hemispheric asymmetry in connection structure rather than in frequency tuning.