Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Jeffrey S. Taube
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (2): 159–166.
Published: 01 February 2021
FIGURES
Abstract
View article
PDF
Real-world navigation requires movement of the body through space, producing a continuous stream of visual and self-motion signals, including proprioceptive, vestibular, and motor efference cues. These multimodal cues are integrated to form a spatial cognitive map, an abstract, amodal representation of the environment. How the brain combines these disparate inputs and the relative importance of these inputs to cognitive map formation and recall are key unresolved questions in cognitive neuroscience. Recent advances in virtual reality technology allow participants to experience body-based cues when virtually navigating, and thus it is now possible to consider these issues in new detail. Here, we discuss a recent publication that addresses some of these issues (D. J. Huffman and A. D. Ekstrom. A modality-independent network underlies the retrieval of large-scale spatial environments in the human brain. Neuron , 104 , 611–622, 2019). In doing so, we also review recent progress in the study of human spatial cognition and raise several questions that might be addressed in future studies.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (7): 1008–1019.
Published: 01 July 2013
FIGURES
Abstract
View article
PDF
Identifying the neural mechanisms underlying spatial orientation and navigation has long posed a challenge for researchers. Multiple approaches incorporating a variety of techniques and animal models have been used to address this issue. More recently, virtual navigation has become a popular tool for understanding navigational processes. Although combining this technique with functional imaging can provide important information on many aspects of spatial navigation, it is important to recognize some of the limitations these techniques have for gaining a complete understanding of the neural mechanisms of navigation. Foremost among these is that, when participants perform a virtual navigation task in a scanner, they are lying motionless in a supine position while viewing a video monitor. Here, we provide evidence that spatial orientation and navigation rely to a large extent on locomotion and its accompanying activation of motor, vestibular, and proprioceptive systems. Researchers should therefore consider the impact on the absence of these motion-based systems when interpreting virtual navigation/functional imaging experiments to achieve a more accurate understanding of the mechanisms underlying navigation.