Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Jennifer J. Heisz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (11): 1895–1907.
Published: 01 November 2017
FIGURES
Abstract
View article
PDF
This study examined the combined effect of physical exercise and cognitive training on memory and neurotrophic factors in healthy, young adults. Ninety-five participants completed 6 weeks of exercise training, combined exercise and cognitive training, or no training (control). Both the exercise and combined training groups improved performance on a high-interference memory task, whereas the control group did not. In contrast, neither training group improved on general recognition performance, suggesting that exercise training selectively increases high-interference memory that may be linked to hippocampal function. Individuals who experienced greater fitness improvements from the exercise training (i.e., high responders to exercise) also had greater increases in the serum neurotrophic factors brain-derived neurotrophic factor and insulin-like growth factor-1. These high responders to exercise also had better high-interference memory performance as a result of the combined exercise and cognitive training compared with exercise alone, suggesting that potential synergistic effects might depend on the availability of neurotrophic factors. These findings are especially important, as memory benefits accrued from a relatively short intervention in high-functioning young adults.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (3): 605–613.
Published: 01 March 2015
FIGURES
Abstract
View article
PDF
The human brain undergoes marked structural changes with age including cortical thinning and reduced connectivity because of the degradation of myelin. Although these changes can compromise cognitive function, the brain is able to functionally reorganize to compensate for some of this structural loss. However, there are interesting individual differences in outcome: When comparing individuals of similar age, those who engage in regular physical activity are less affected by the typical age-related decline in cognitive function. This study used multiscale entropy to reveal a shift in the way the brain processes information in older adults that is related to physical activity. Specifically, older adults who were more physically active engaged in more local neural information processing. Interestingly, this shift toward local information processing was also associated with improved executive function performance in older adults, suggesting that physical activity may help to improve aspects of cognitive function in older adults by biasing the neural system toward local information processing. In the face of age-related structural decline, the neural plasticity that is enhanced through physical activity may help older adults maintain cognitive health longer into their lifespan.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (1): 41–53.
Published: 01 January 2014
FIGURES
Abstract
View article
PDF
Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (6): 1127–1134.
Published: 01 June 2009
Abstract
View article
PDF
Face processing changes when a face is learned with personally relevant information. In a five-day learning paradigm, faces were presented with rich semantic stories that conveyed personal information about the faces. Event-related potentials were recorded before and after learning during a passive viewing task. When faces were novel, we observed the expected N170 repetition effect—a reduction in amplitude following face repetition. However, when faces were learned with personal information, the N170 repetition effect was eliminated, suggesting that semantic information modulates the N170 repetition effect. To control for the possibility that a simple perceptual effect contributed to the change in the N170 repetition effect, another experiment was conducted using stories that were not related to the person (i.e., stories about rocks and volcanoes). Although viewers were exposed to the faces an equal amount of time, the typical N170 repetition effect was observed, indicating that personal semantic information associated with a face, and not simply perceptual exposure, produced the observed reduction in the N170 repetition effect. These results are the first to reveal a critical perceptual change in face processing as a result of learning person-related information. The results have important implications for researchers studying face processing, as well as learning and memory in general, as they demonstrate that perceptual information alone is not enough to establish familiarity akin to real-world person learning.