Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Jenny R. Rieck
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (9): 1811–1832.
Published: 01 August 2021
FIGURES
| View All (6)
Abstract
View article
PDF
Cognitive control involves the flexible allocation of mental resources during goal-directed behavior and comprises three correlated but distinct domains—inhibition, shifting, and working memory. The work of Don Stuss and others has demonstrated that frontal and parietal cortices are crucial to cognitive control, particularly in normal aging, which is characterized by reduced control mechanisms. However, the structure–function relationships specific to each domain and subsequent impact on performance are not well understood. In the current study, we examined both age and individual differences in functional activity associated with core domains of cognitive control in relation to fronto-parietal structure and task performance. Participants ( n = 140, aged 20–86 years) completed three fMRI tasks: go/no-go (inhibition), task switching (shifting), and n -back (working memory), in addition to structural and diffusion imaging. All three tasks engaged a common set of fronto-parietal regions; however, the contributions of age, brain structure, and task performance to functional activity were unique to each domain. Aging was associated with differences in functional activity for all tasks, largely in regions outside common fronto-parietal control regions. Shifting and inhibition showed greater contributions of structure to overall decreases in brain activity, suggesting that more intact fronto-parietal structure may serve as a scaffold for efficient functional response. Working memory showed no contribution of structure to functional activity but had strong effects of age and task performance. Together, these results provide a comprehensive and novel examination of the joint contributions of aging, performance, and brain structure to functional activity across multiple domains of cognitive control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (8): 1536–1549.
Published: 01 August 2020
FIGURES
| View All (4)
Abstract
View article
PDF
Ventral visual cortex exhibits highly organized and selective patterns of functional activity associated with visual processing. However, this specialization decreases in normal aging, with functional responses to different visual stimuli becoming more similar with age, a phenomenon termed “dedifferentiation.” The current study tested the hypothesis that age-related degradation of the inferior longitudinal fasciculus (ILF), a white matter pathway involved in visual perception, could account for dedifferentiation of both localized and distributed brain activity in ventral visual cortex. Participants included 281 adults, ages 20–89 years, from the Dallas Lifespan Brain Study who underwent diffusion-weighted imaging to measure white matter diffusivity, as well as fMRI to measure functional selectivity to viewing photographs from different categories (e.g., faces, houses). In general, decreased ILF anisotropy significantly predicted both focal and broad functional dedifferentiation. Specifically, there was a localized effect of structure on function, such that decreased anisotropy in a smaller mid-fusiform region of ILF predicted less selective (i.e., more dedifferentiated) response to viewing faces in a proximal face-responsive region of fusiform. On the other hand, the whole ILF predicted less selective response across broader ventral visual cortex for viewing animate (e.g., human faces, animals) versus inanimate (e.g., houses, chairs) images. This structure–function relationship became weaker with age and was no longer significant after the age of 70 years. These findings indicate that decreased white matter anisotropy is associated with maladaptive differences in proximal brain function and is an important variable to consider when interpreting age differences in functional selectivity.