Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Jeremy B. Caplan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (11): 2144–2167.
Published: 01 October 2022
FIGURES
| View All (7)
Abstract
View article
PDF
If two associations share an item, one may be remembered at the expense of the other (BC recalled but not AB). Here, we identify the neural processes by which this competition materializes and is resolved. We analyzed fMRI signal while participants studied sets of pairs that reliably induced pair-to-pair associative interference, but which participants could not fully resolve. Precuneus activity tracked retrieval of previous pairs during study of later overlapping pairs. This retrieval apparently produced interference by diverting study resources from the currently displayed pair. However, when activity in ventromedial prefrontal cortex, as well as anterior subregions of the hippocampus, was present while the earlier pair had been studied, interference was reversed, and both pairs were likely to be recalled. Angular gyrus and mid-frontal activity were related to interference resolution once the participant had seen both pairs. Taken together, associations compete via precuneus-mediated competitive retrieval, but ventromedial prefrontal cortex may neutralize this by ensuring that when the earlier association is remembered while studying the later pair, memories of the two pairs can overcome interference likely via activity in mid-frontal cortex and angular gyrus.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (1): 183–202.
Published: 01 January 2017
FIGURES
| View All (11)
Abstract
View article
PDF
During study trials of a recognition memory task, alpha (∼10 Hz) oscillations decrease, and concurrently, theta (4–8 Hz) oscillations increase when later memory is successful versus unsuccessful (subsequent memory effect). Likewise, at test, reduced alpha and increased theta activity are associated with successful memory (retrieval success effect). Here we take an individual-differences approach to test three hypotheses about theta and alpha oscillations in verbal, old/new recognition, measuring the difference in oscillations between hit trials and miss trials. First, we test the hypothesis that theta and alpha oscillations have a moderately mutually exclusive relationship; but no support for this hypothesis was found. Second, we test the hypothesis that theta oscillations explain not only memory effects within participants, but also individual differences. Supporting this prediction, durations of theta (but not alpha) oscillations at study and at test correlated significantly with d ′ across participants. Third, we test the hypothesis that theta and alpha oscillations reflect familiarity and recollection processes by comparing oscillation measures to ERPs that are implicated in familiarity and recollection. The alpha-oscillation effects correlated with some ERP measures, but inversely, suggesting that the actions of alpha oscillations on memory processes are distinct from the roles of familiarity- and recollection-linked ERP signals. The theta-oscillation measures, despite differentiating hits from misses, did not correlate with any ERP measure; thus, theta oscillations may reflect elaborative processes not tapped by recollection-related ERPs. Our findings are consistent with alpha oscillations reflecting visual inattention, which can modulate memory, and with theta oscillations supporting recognition memory in ways that complement the most commonly studied ERPs.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (10): 1522–1538.
Published: 01 October 2016
FIGURES
| View All (6)
Abstract
View article
PDF
The hippocampus is thought to support association-memory, particularly when tested with cued recall. One of the most well-known and studied factors that influences accuracy of verbal association-memory is imageability; participants remember pairs of high-imageability words better than pairs of low-imageability words. High-imageability words are also remembered better in tests of item-memory. However, we previously found that item-memory effects could not explain the enhancement in cued recall, suggesting that imageability enhances association-memory strength. Here we report an fMRI study designed to ask, what is the role of the hippocampus in the memory advantage for associations due to imageability? We tested two alternative hypotheses: (1) Recruitment Hypothesis: High-imageability pairs are remembered better because they recruit the underlying hippocampal association-memory function more effectively. Alternatively, (2) Bypassing Hypothesis: Imageability functions by making the association-forming process easier, enhancing memory in a way that bypasses the hippocampus, as has been found, for example, with explicit unitization imagery strategies. Results found, first, hippocampal BOLD signal was greater during study and recall of high- than low-imageability word pairs. Second, the difference in activity between recalled and forgotten pairs showed a main effect, but no significant interaction with imageability, challenging the bypassing hypothesis, but consistent with the predictions derived from the recruitment hypothesis. Our findings suggest that certain stimulus properties, like imageability, may leverage, rather than avoid, the associative function of the hippocampus to support superior association-memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (5): 824–836.
Published: 01 May 2010
FIGURES
Abstract
View article
PDF
During spatial navigation, lesion and functional imaging studies suggest that the right hemisphere has a unique functional role. However, studies of direct human brain recordings have not reported interhemisphere differences in navigation-related oscillatory activity. We investigated this apparent discrepancy using intracranial electroencephalographic recordings from 24 neurosurgical patients playing a virtual taxi driver game. When patients were virtually moving in the game, brain oscillations at various frequencies increased in amplitude compared with periods of virtual stillness. Using log-linear analysis, we analyzed the region and frequency specificities of this pattern and found that neocortical movement-related gamma oscillations (34–54 Hz) were significantly lateralized to the right hemisphere, especially in posterior neocortex. We also observed a similar right lateralization of gamma oscillations related to searching for objects at unknown virtual locations. Thus, our results indicate that gamma oscillations in the right neocortex play a special role in human spatial navigation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (7): 1346–1364.
Published: 01 July 2009
Abstract
View article
PDF
Two of the most well studied and ecologically relevant memory paradigms are memory for pairs (“associations”) and ordered sequences (“serial lists”). Behavioral theories comprise two classes: those that use common mechanisms and those that use distinct mechanisms for study and retrieval of associations versus serial lists. We tested the common-mechanisms hypothesis by recording electroencephalographic activity related to successful study (“subsequent memory effect” [SME]) of pairs and short lists (triples) of nouns. Multivariate analysis identified four distributed patterns of brain activity: (1) right parietal activity throughout most of the study period that differentiated study of pairs from triples within subjects as well as exhibiting an SME that was significant for pairs but not for triples; (2) a left parietal and fronto-polar activity pattern that was reliable around 500 msec and later in the study trial, exhibiting an SME for pairs and a weaker, nonsignificant SME for triples; (3) a left frontal/right parietal topography in the middle of the study interval which covaried with speed and accuracy across subjects; and (4) a pattern resembling the late positive component preceded by an early potential which together covaried with accuracy in triples but slow response times for both pairs and triples. These patterns point to the relevance of three classic SME components (early, late positive, and slow components) from single-item memory to memory for structured information, but suggest that they reflect subsets of more complex spatio-temporal patterns. Our findings support common underlying mechanisms for study and recall of pairs and lists. However, existing models must be modified to account for differences in both the presence of certain study-relevant processes and in the relevance of these processes to performance measures for pairs versus serial lists.