Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Jeremy B. Wilmer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (4): 528–540.
Published: 01 May 2004
Abstract
View article
PDF
Developmental dyslexia is associated with deficits in the processing of visual motion stimuli, and some evidence suggests that these motion processing deficits are related to various reading subskills deficits. However, little is known about the mechanisms underlying such associations. This study lays a richer groundwork for exploration of such mechanisms by more comprehensively and rigorously characterizing the relationship between motion processing deficits and reading subskills deficits. Thirty-six adult participants, 19 of whom had a history of developmental dyslexia, completed a battery of visual, cognitive, and reading tests. This battery combined motion processing and reading subskills measures used across previous studies and added carefully matched visual processing control tasks. Results suggest that there are in fact two distinct motion processing deficits in developmental dyslexia, rather than one as assumed by previous research, and that each of these deficits is associated with a different type of reading subskills deficit. A deficit in detecting coherent motion is selectively associated with low accuracy on reading subskills tests, and a deficit in discriminating velocities is selectively associated with slow performance on these same tests. In addition, evidence from visual processing control tasks as well as self-reports of ADHD symptoms suggests that these motion processing deficits are specific to the domain of visual motion, and result neither from a broader visual deficit, nor from the sort of generalized attention deficit commonly comorbid with developmental dyslexia. Finally, dissociation between these two motion processing deficits suggests that they may have distinct neural and functional underpinnings. The two distinct patterns of motion processing and reading deficits demonstrated by this study may reflect separable underlying neurocognitive mechanisms of developmental dyslexia.