Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Jiska S. Peper
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (11): 1845–1859.
Published: 01 November 2017
FIGURES
| View All (5)
Abstract
View article
PDF
Individual differences in attitudes to risk (a taste for risk, known probabilities) and ambiguity (a tolerance for uncertainty, unknown probabilities) differentially influence risky decision-making. However, it is not well understood whether risk and ambiguity are coded differently within individuals. Here, we tested whether individual differences in risk and ambiguity attitudes were reflected in distinct neural correlates during choice and outcome processing of risky and ambiguous gambles. To these ends, we developed a neuroimaging task in which participants ( n = 50) chose between a sure gain and a gamble, which was either risky or ambiguous, and presented decision outcomes (gains, no gains). From a separate task in which the amount, probability, and ambiguity level were varied, we estimated individuals' risk and ambiguity attitudes. Although there was pronounced neural overlap between risky and ambiguous gambling in a network typically related to decision-making under uncertainty, relatively more risk-seeking attitudes were associated with increased activation in valuation regions of the brain (medial and lateral OFC), whereas relatively more ambiguity-seeking attitudes were related to temporal cortex activation. In addition, although striatum activation was observed during reward processing irrespective of a prior risky or ambiguous gamble, reward processing after an ambiguous gamble resulted in enhanced dorsomedial PFC activation, possibly functioning as a general signal of uncertainty coding. These findings suggest that different neural mechanisms reflect individual differences in risk and ambiguity attitudes and that risk and ambiguity may impact overt risk-taking behavior in different ways.
Journal Articles
Development of Risk Taking: Contributions from Adolescent Testosterone and the Orbito-frontal Cortex
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (12): 2141–2150.
Published: 01 December 2013
FIGURES
| View All (4)
Abstract
View article
PDF
The role of puberty in the development of risk taking remains poorly understood. Here, in a normative sample of 268 participants between 8 and 25 years old, we applied a psycho-endocrine neuroimaging approach to investigate the contribution of testosterone levels and OFC morphology to individual differences in risk taking. Risk taking was measured with the balloon analogue risk-taking task. We found that, corrected for age, higher endogenous testosterone level was related to increased risk taking in boys (more explosions) and girls (more money earned). In addition, a smaller medial OFC volume in boys and larger OFC surface area in girls related to more risk taking. A mediation analysis indicated that OFC morphology partly mediates the association between testosterone level and risk taking, independent of age. Mediation was found in such a way that a smaller medial OFC in boys potentiates the association between testosterone and risk taking but suppresses the association in girls. This study provides insights into endocrinological and neural underpinnings of normative development of risk taking, by indicating that OFC morphology, at least partly, mediates the association between testosterone and risk-taking behavior.