Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Joan Liu-Shuang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (3): 393–410.
Published: 01 March 2018
FIGURES
| View All (10)
Abstract
View article
PDF
In daily life, efficient perceptual categorization of faces occurs in dynamic and highly complex visual environments. Yet the role of selective attention in guiding face categorization has predominantly been studied under sparse and static viewing conditions, with little focus on disentangling the impact of attentional enhancement and suppression. Here we show that attentional enhancement and suppression exert a differential impact on face categorization supported by the left and right hemispheres. We recorded 128-channel EEG while participants viewed a 6-Hz stream of object images (buildings, animals, objects, etc.) with a face image embedded as every fifth image (i.e., OOOOFOOOOFOOOOF…). We isolated face-selective activity by measuring the response at the face presentation frequency (i.e., 6 Hz/5 = 1.2 Hz) under three conditions: Attend Faces, in which participants monitored the sequence for instances of female faces; Attend Objects, in which they responded to instances of guitars; and Baseline, in which they performed an orthogonal task on the central fixation cross. During the orthogonal task, face-specific activity was predominantly centered over the right occipitotemporal region. Actively attending to faces enhanced face-selective activity much more evidently in the left hemisphere than in the right, whereas attending to objects suppressed the face-selective response in both hemispheres to a comparable extent. In addition, the time courses of attentional enhancement and suppression did not overlap. These results suggest the left and right hemispheres support face-selective processing in distinct ways—where the right hemisphere is mandatorily engaged by faces and the left hemisphere is more flexibly recruited to serve current tasks demands.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (8): 1368–1377.
Published: 01 August 2017
FIGURES
| View All (5)
Abstract
View article
PDF
A growing body of literature suggests that human individuals differ in their ability to process face identity. These findings mainly stem from explicit behavioral tasks, such as the Cambridge Face Memory Test (CFMT). However, it remains an open question whether such individual differences can be found in the absence of an explicit face identity task and when faces have to be individualized at a single glance. In the current study, we tested 49 participants with a recently developed fast periodic visual stimulation (FPVS) paradigm [Liu-Shuang, J., Norcia, A. M., & Rossion, B. An objective index of individual face discrimination in the right occipitotemporal cortex by means of fast periodic oddball stimulation. Neuropsychologia, 52, 57–72, 2014] in EEG to rapidly, objectively, and implicitly quantify face identity processing. In the FPVS paradigm, one face identity (A) was presented at the frequency of 6 Hz, allowing only one gaze fixation, with different face identities (B, C, D) presented every fifth face (1.2 Hz; i.e., AAAABAAAACAAAAD…). Results showed a face individuation response at 1.2 Hz and its harmonics, peaking over occipitotemporal locations. The magnitude of this response showed high reliability across different recording sequences and was significant in all but two participants, with the magnitude and lateralization differing widely across participants. There was a modest but significant correlation between the individuation response amplitude and the performance of the behavioral CFMT task, despite the fact that CFMT and FPVS measured different aspects of face identity processing. Taken together, the current study highlights the FPVS approach as a promising means for studying individual differences in face identity processing.