Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Johanna Wagner
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (9): 1404–1421.
Published: 01 September 2019
FIGURES
| View All (4)
Abstract
View article
PDF
Being in the state of having both a strong impulse to act and a simultaneous need to withhold is commonly described as an “urge.” Although urges are part of everyday life and also important to several clinical disorders, the components of urge are poorly understood. It has been conjectured that withholding an action during urge involves active response suppression. We tested that idea by designing an urge paradigm that required participants to resist an impulse to press a button and gain relief from heat (one hand was poised to press while the other arm had heat stimulation). We first used paired-pulse TMS over motor cortex (M1) to measure corticospinal excitability of the hand that could press for relief, while participants withheld movement. We observed increased short-interval intracortical inhibition, an index of M1 GABAergic interneuron activity that was maintained across seconds and specific to the task-relevant finger. A second experiment replicated this. We next used EEG to better “image” putative cortical signatures of motor suppression and pain. We found increased sensorimotor beta contralateral to the task-relevant hand while participants withheld the movement during heat. We interpret this as further evidence of a motor suppressive process. Additionally, there was beta desynchronization contralateral to the arm with heat, which could reflect a pain signature. Strikingly, participants who “suppressed” more exhibited less of a putative “pain” response. We speculate that, during urge, a suppressive state may have functional relevance for both resisting a prohibited action and for mitigating discomfort.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (1): 107–118.
Published: 01 January 2018
FIGURES
| View All (5)
Abstract
View article
PDF
Many studies have examined the rapid stopping of action as a proxy of human self-control. Several methods have shown that a critical focus for stopping is the right inferior frontal cortex. Moreover, electrocorticography studies have shown beta band power increases in the right inferior frontal cortex and in the BG for successful versus failed stop trials, before the time of stopping elapses, perhaps underpinning a prefrontal–BG network for inhibitory control. Here, we tested whether the same signature might be visible in scalp electroencephalography (EEG)—which would open important avenues for using this signature in studies of the recruitment and timing of prefrontal inhibitory control. We used independent component analysis and time–frequency approaches to analyze EEG from three different cohorts of healthy young volunteers (48 participants in total) performing versions of the standard stop signal task. We identified a spectral power increase in the band 13–20 Hz that occurs after the stop signal, but before the time of stopping elapses, with a right frontal topography in the EEG. This right frontal beta band increase was significantly larger for successful compared with failed stops in two of the three studies. We also tested the hypothesis that unexpected events recruit the same frontal system for stopping. Indeed, we show that the stopping-related right-lateralized frontal beta signature was also active after unexpected events (and we accordingly provide data and scripts for the method). These results validate a right frontal beta signature in the EEG as a temporally precise and functionally significant neural marker of the response inhibition process.