Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
John E. Hummel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (2): 260–271.
Published: 01 March 2004
Abstract
View article
PDF
Analogy is important for learning and discovery and is considered a core component of intelligence. We present a computational account of analogical reasoning that is compatible with data we have collected from patients with cortical degeneration of either their frontal or anterior temporal cortices due to frontotemporal lobar degeneration (FTLD). These two patient groups showed different deficits in picture and verbal analogies: frontal lobe FTLD patients tended to make errors due to impairments in working memory and inhibitory abilities, whereas temporal lobe FTLD patients tended to make errors due to semantic memory loss. Using the “Learning and Inference with Schemas and Analogies” model, we provide a specific account of how such deficits may arise within neural networks supporting analogical problem solving.