Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-9 of 9
John J. McDonald
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (11): 2127–2143.
Published: 01 October 2022
FIGURES
| View All (6)
Abstract
View article
PDF
RT studies have provided evidence for a singleton-detection strategy that is used to search for salient targets when there is no additional featural knowledge that would help guide attention. Despite this behavioral evidence, there have been few ERP studies of singleton detection mode because it was reported early on that the ERP signature of attentional selection (the N2pc) is absent without feature guidance. Recently, however, it was discovered that a small and relatively late N2pc occurs in singleton detection mode along with a previously unreported component called the singleton detection positivity (SDP). Here, we show that both components are influenced by the number of items in the display, as one might expect in a salience-based search mode. Specifically, the N2pc and SDP were larger when the set size was increased to make the singleton “pop out” more easily, when participants responded more quickly regardless of set size, and when RT search slopes were negative (Experiment 1). The latency of the SDP also depended on set size. In Experiment 2, EEG was recorded with a higher density electrode array to better characterize the scalp topography of the components and to estimate their neural sources. Regional sources near the ventral surface of extrastriate cortex in the occipital lobe explained over 96% of N2pc and SDP activities. These results indicate that searching in singleton detection mode selectively modulates processing within perceptual regions of visual cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (2): 348–364.
Published: 05 January 2022
FIGURES
| View All (6)
Abstract
View article
PDF
The control processes that guide attention to a visual-search target can result in the selection of an irrelevant object with similar features (a distractor). Once attention is captured by such a distractor, search for a subsequent target is momentarily impaired if the two stimuli appear at different locations. The textbook explanation for this impairment is based on the notion of an indivisible focus of attention that moves to the distractor, illuminates a nontarget that subsequently appears at that location, and then moves to the target once the nontarget is rejected. Here, we show that such delayed orienting to the target does not underlie the behavioral cost of distraction. Observers identified a color-defined target appearing within the second of two stimulus arrays. The first array contained irrelevant items, including one that shared the target's color. ERPs were examined to test two predictions stemming from the textbook serial-orienting hypothesis. Namely, when the target and distractor appear at different locations, (1) the target should elicit delayed selection activity relative to same-location trials, and (2) the nontarget search item appearing at the distractor location should elicit selection activity that precedes selection activity tied to the target. Here, the posterior contralateral N2 component was used to track selection of each of these search-array items and the previous distractor. The results supported neither prediction above, thereby disconfirming the serial-orienting hypothesis. Overall, the results show that the behavioral costs of distraction are caused by perceptual and postperceptual competition between concurrently attended target and nontarget stimuli.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (3): 433–445.
Published: 01 March 2016
FIGURES
| View All (5)
Abstract
View article
PDF
Recent findings suggest that a salient, irrelevant sound attracts attention to its location involuntarily and facilitates processing of a colocalized visual event [McDonald, J. J., Störmer, V. S., Martinez, A., Feng, W. F., & Hillyard, S. A. Salient sounds activate human visual cortex automatically. Journal of Neuroscience, 33, 9194–9201, 2013]. Associated with this cross-modal facilitation is a sound-evoked slow potential over the contralateral visual cortex termed the auditory-evoked contralateral occipital positivity (ACOP). Here, we further tested the hypothesis that a salient sound captures visual attention involuntarily by examining sound-evoked modulations of the occipital alpha rhythm, which has been strongly associated with visual attention. In two purely auditory experiments, lateralized irrelevant sounds triggered a bilateral desynchronization of occipital alpha-band activity (10–14 Hz) that was more pronounced in the hemisphere contralateral to the sound's location. The timing of the contralateral alpha-band desynchronization overlapped with that of the ACOP (∼240–400 msec), and both measures of neural activity were estimated to arise from neural generators in the ventral-occipital cortex. The magnitude of the lateralized alpha desynchronization was correlated with ACOP amplitude on a trial-by-trial basis and between participants, suggesting that they arise from or are dependent on a common neural mechanism. These results support the hypothesis that the sound-induced alpha desynchronization and ACOP both reflect the involuntary cross-modal orienting of spatial attention to the sound's location.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (1): 46–56.
Published: 01 January 2015
FIGURES
| View All (4)
Abstract
View article
PDF
The time required to find an object of interest in the visual field often increases as a function of the number of items present. This increase or inefficiency was originally interpreted as evidence for the serial allocation of attention to potential target items, but controversy has ensued for decades. We investigated this issue by recording ERPs from humans searching for a target in displays containing several differently colored items. Search inefficiency was ascribed not to serial search but to the time required to selectively process the target once found. Additionally, less time was required for the target to “pop out” from the rest of the display when the color of the target repeated across trials. These findings indicate that task relevance can cause otherwise inconspicuous items to pop out and highlight the need for direct neurophysiological measures when investigating the causes of search inefficiency.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (4): 760–775.
Published: 01 April 2009
Abstract
View article
PDF
Attentional selection of a target presented among distractors can be indexed with an event-related potential (ERP) component known as the N2pc. Theoretical interpretation of the N2pc has suggested that it reflects a fundamental mechanism of attention that shelters the cortical representation of targets by suppressing neural activity stemming from distractors. Results from fields other than human electrophysiology, however, suggest that attention does not act solely through distractor suppression; rather, it modulates the processing of both target and distractors. We conducted four ERP experiments designed to investigate whether the N2pc reflects multiple attentional mechanisms. Our goal was to reconcile ostensibly conflicting outcomes obtained in electrophysiological studies of attention with those obtained using other methodologies. Participants viewed visual search arrays containing one target and one distractor. In Experiments 1 through 3, the distractor was isoluminant with the background, and therefore, did not elicit early lateralized ERP activity. This work revealed a novel contralateral ERP component that appears to reflect direct suppression of the cortical representation of the distractor. We accordingly name this component the distractor positivity (P D ). In Experiment 4, an ERP component associated with target processing was additionally isolated. We refer to this component as the target negativity (N T ). We believe that the N2pc reflects the summation of the P D and N T , and that these discrete components may have been confounded in earlier electrophysiological studies. Overall, this study demonstrates that attention acts on both target and distractor representations, and that this can be indexed in the visual ERP.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (4): 725–733.
Published: 01 April 2009
Abstract
View article
PDF
People are slow to react to objects that appear at recently attended locations. This delay—known as inhibition of return (IOR)—is believed to aid search of the visual environment by discouraging inspection of recently inspected objects. However, after two decades of research, there is no evidence that IOR reflects an inhibition in the covert deployment of attention. Here, observers participated in a modified visual-search task that enabled us to measure IOR and an ERP component called the posterior contralateral N2 (N2pc) that reflects the covert deployment of attention. The N2pc was smaller when a target appeared at a recently attended location than when it appeared at a recently unattended location. This reduction was due to modulation of neural processing in the visual cortex and the right parietal lobe. Importantly, there was no evidence for a delay in the N2pc. We conclude that in our task, the inhibitory processes underlying IOR reduce the probability of shifting attention to recently attended locations but do not delay the covert deployment of attention itself.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (12): 1994–2004.
Published: 01 December 2007
Abstract
View article
PDF
Several converging lines of evidence suggest that the anterior cingulate cortex (ACC) is selectively involved in error detection or evaluation of poor performance. Here we challenge this notion by presenting event-related potential (ERP) evidence that the feedback-elicited error-related negativity, an ERP component attributed to the ACC, can be elicited by positive feedback when a person is expecting negative feedback and vice versa. These results suggest that performance monitoring in the ACC is not limited to error processing. We propose that the ACC acts as part of a more general performance-monitoring system that is activated by violations in expectancy. Further, we propose that the common observation of increased ACC activity elicited by negative events could be explained by an overoptimistic bias in generating expectations of performance. These results could shed light into neurobehavioral disorders, such as depression and mania, associated with alterations in performance monitoring and also in judgments of self-related events.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (4): 604–613.
Published: 01 April 2006
Abstract
View article
PDF
We investigated the ability of salient yet task-irrelevant stimuli to capture attention in two visual search experiments. Participants were presented with circular search arrays that contained a highly salient distractor singleton defined by color and a less salient target singleton defined by form. A component of the event-related potential called the N2pc was used to track the allocation of attention to lateralized positions in the arrays. In Experiment 1, a lateralized distractor elicited an N2pc when a concurrent target was presented on the vertical meridian and thus could not elicit lateralized components such as the N2pc. A similar distractor-elicited N2pc was found in Experiment 2, which was conducted to rule out certain voluntary search strategies. Additionally, in Experiment 2 both the distractor and the target elicited the N2pc component when the two stimuli were presented on opposite sides of the search array. Critically, the distractor-elicited N2pc preceded the target-elicited N2pc on these trials. These results demonstrate that participants shifted attention to the target only after shifting attention to the more salient but task-irrelevant distractor. This pattern of results is in line with theories of attention in which stimulus-driven control plays an integral role.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (1): 10–19.
Published: 01 January 2003
Abstract
View article
PDF
Orienting attention involuntarily to the location of a sudden sound improves perception of subsequent visual stimuli that appear nearby. The neural substrates of this cross-modal attention effect were investigated by recording event-related potentials to the visual stimuli using a dense electrode array and localizing their brain sources through inverse dipole modeling. A spatially nonpredictive auditory precue modulated visual-evoked neural activity first in the superior temporal cortex at 120–140 msec and then in the ventral occipital cortex of the fusiform gyrus 15–25 msec later. This spatio-temporal sequence of brain activity suggests that enhanced visual perception produced by the cross-modal orienting of spatial attention results from neural feedback from the multimodal superior temporal cortex to the visual cortex of the ventral processing stream.