Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-9 of 9
John Jonides
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (6): 1015–1037.
Published: 02 May 2022
FIGURES
| View All (6)
Abstract
View articletitled, Effects of Multisession Prefrontal Transcranial Direct Current Stimulation on Long-term Memory and Working Memory in Older Adults
View
PDF
for article titled, Effects of Multisession Prefrontal Transcranial Direct Current Stimulation on Long-term Memory and Working Memory in Older Adults
Transcranial direct current stimulation (tDCS) is a noninvasive form of electrical brain stimulation popularly used to augment the effects of working memory (WM) training. Although success has been mixed, some studies report enhancements in WM performance persisting days, weeks, or even months that are actually more reminiscent of consolidation effects typically observed in the long-term memory (LTM) domain, rather than WM improvements per se. Although tDCS has been often reported to enhance both WM and LTM, these effects have never been directly compared within the same study. However, given their considerable neural and behavioral overlap, this is a timely comparison to make. This study reports results from a multisession intervention in older adults comparing active and sham tDCS over the left dorsolateral pFC during training on both an n -back WM task and a word learning LTM task. We found strong and robust effects on LTM, but mixed effects on WM that only emerged for those with lower baseline ability. Importantly, mediation analyses showed an indirect effect of tDCS on WM that was mediated by improvements in consolidation. We conclude that tDCS over the left dorsolateral pFC can be used as an effective intervention to foster long-term learning and memory consolidation in aging, which can manifest in performance improvements across multiple memory domains.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (9): 1498–1508.
Published: 01 September 2017
FIGURES
Abstract
View articletitled, Individual Differences and Long-term Consequences of tDCS-augmented Cognitive Training
View
PDF
for article titled, Individual Differences and Long-term Consequences of tDCS-augmented Cognitive Training
A great deal of interest surrounds the use of transcranial direct current stimulation (tDCS) to augment cognitive training. However, effects are inconsistent across studies, and meta-analytic evidence is mixed, especially for healthy, young adults. One major source of this inconsistency is individual differences among the participants, but these differences are rarely examined in the context of combined training/stimulation studies. In addition, it is unclear how long the effects of stimulation last, even in successful interventions. Some studies make use of follow-up assessments, but very few have measured performance more than a few months after an intervention. Here, we utilized data from a previous study of tDCS and cognitive training [Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., et al. Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28, 1419–1432, 2016] in which participants trained on a working memory task over 7 days while receiving active or sham tDCS. A new, longer-term follow-up to assess later performance was conducted, and additional participants were added so that the sham condition was better powered. We assessed baseline cognitive ability, gender, training site, and motivation level and found significant interactions between both baseline ability and motivation with condition (active or sham) in models predicting training gain. In addition, the improvements in the active condition versus sham condition appear to be stable even as long as a year after the original intervention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (9): 1419–1432.
Published: 01 September 2016
FIGURES
| View All (6)
Abstract
View articletitled, Enhancing Working Memory Training with Transcranial Direct Current Stimulation
View
PDF
for article titled, Enhancing Working Memory Training with Transcranial Direct Current Stimulation
Working memory (WM) is a fundamental cognitive ability that supports complex thought but is limited in capacity. Thus, WM training interventions have become very popular as a means of potentially improving WM-related skills. Another promising intervention that has gained increasing traction in recent years is transcranial direct current stimulation (tDCS), a noninvasive form of brain stimulation that can modulate cortical excitability and temporarily increase brain plasticity. As such, it has the potential to boost learning and enhance performance on cognitive tasks. This study assessed the efficacy of tDCS to supplement WM training. Sixty-two participants were randomized to receive either right prefrontal, left prefrontal, or sham stimulation with concurrent visuospatial WM training over the course of seven training sessions. Results showed that tDCS enhanced training performance, which was strikingly preserved several months after training completion. Furthermore, we observed stronger effects when tDCS was spaced over a weekend break relative to consecutive daily training, and we also demonstrated selective transfer in the right prefrontal group to nontrained tasks of visual and spatial WM. These findings shed light on how tDCS may be leveraged as a tool to enhance performance on WM-intensive learning tasks.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (11): 2114–2120.
Published: 01 November 2009
Abstract
View articletitled, Order and Magnitude Share a Common Representation in Parietal Cortex
View
PDF
for article titled, Order and Magnitude Share a Common Representation in Parietal Cortex
The role of the intraparietal sulcus (IPS) in the representation of numerical magnitude is well established. Recently, there has also been speculation that the IPS is involved in the representation of ordinal information as well. These claims, however, overlook the fact that all neuroimaging paradigms in which participants make judgments about either magnitude and/or order result in a behavioral distance effect (i.e., the comparison is easier when the stimuli span a greater distance). This leaves open two possibilities: It may be that activation of the IPS is due to the mechanism that yields distance effects, or it may be that the IPS is involved in the representation of information about both magnitude and order. The current study used fMRI to compare a magnitude task in which participants show distance effects to an order-judgment task that yields reverse-distance effects. The results reveal activation of the IPS for both the magnitude and order tasks that is based on participants' strategies as opposed to the actual distance between the numbers. This leads to the conclusion that the IPS represents a mental number line, and that accessing this line can lead to distance effects when participants compare magnitudes and to reverse-distance effects when participants check for order.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (Supplement 2): 130–144.
Published: 01 November 2000
Abstract
View articletitled, Order Information in Working Memory: fMRI Evidence for Parietal and Prefrontal Mechanisms
View
PDF
for article titled, Order Information in Working Memory: fMRI Evidence for Parietal and Prefrontal Mechanisms
Working memory is thought to include a mechanism that allows for the coding of order information. One question of interest is how order information is coded, and how that code is neurally implemented. Here we report both behavioral and fMRI findings from an experiment that involved comparing two tasks, an item-memory task and an order-memory task. In each case, five letters were presented for storage, followed after a brief interval by a set of probe letters. In the case of the item-memory task, the two letters were identical, and the subject responded to the question, “Was this letter one of the items you saw?”. In the case of the order-memory task, the letters were different, and subjects responded to the question, “Are these two letters in the order in which you saw them?”. Behaviorally, items that were further apart in the sequence elicited faster reaction times and higher accuracy in the Order task. Areas that were significantly more activated in the Order condition included the parietal and prefrontal cortex. Parietal activations overlapped those involved in number processing, leading to the suggestion that the underlying representation of order and numbers may share a common process, coding for magnitude.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (1): 174–187.
Published: 01 January 2000
Abstract
View articletitled, Age Differences in the Frontal Lateralization of Verbal and Spatial Working Memory Revealed by PET
View
PDF
for article titled, Age Differences in the Frontal Lateralization of Verbal and Spatial Working Memory Revealed by PET
Age-related decline in working memory figures prominently in theories of cognitive aging. However, the effects of aging on the neural substrate of working memory are largely unknown. Positron emission tomography (PET) was used to investigate verbal and spatial short-term storage (3 sec) in older and younger adults. Previous investigations with younger subjects performing these same tasks have revealed asymmetries in the lateral organization of verbal and spatial working memory. Using volume of interest (VOI) analyses that specifically compared activation at sites identified with working memory to their homologous twin in the opposite hemisphere, we show pronounced age differences in this organization, particularly in the frontal lobes: In younger adults, activation is predominantly left lateralized for verbal working memory, and right lateralized for spatial working memory, whereas older adults show a global pattern of anterior bilateral activation for both types of memory. Analyses of frontal subregions indicate that several underlying patterns contribute to global bilaterality in older adults: most notably, bilateral activation in areas associated with rehearsal, and paradoxical laterality in dorsolateral prefrontal sites (DLPFC; greater left activation for spatial and greater right activation for verbal). We consider several mechanisms that could account for these age differences including the possibility that bilateral activation reflects recruitment to compensate for neural decline.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (1): 188–196.
Published: 01 January 2000
Abstract
View articletitled, Age Differences in Behavior and PET Activation Reveal Differences in Interference Resolution in Verbal Working Memory
View
PDF
for article titled, Age Differences in Behavior and PET Activation Reveal Differences in Interference Resolution in Verbal Working Memory
Older adults were tested on a verbal working memory task that used the item-recognition paradigm. On some trials of this task, response-conflict was created by presenting test-items that were familiar but were not members of a current set of items stored in memory. These items required a negative response, but their familiarity biased subjects toward a positive response. Younger subjects show an interference effect on such trials, and this interference is accompanied by activation of a region of left lateral prefrontal cortex. However, there has been no evidence that the activation in this region is causally related to the interference that the subjects exhibit. In the present study, we demonstrate that older adults show more behavioral interference than younger subjects on this task, and they also show no reliable activation at the same lateral prefrontal site. This leads to the conclusion that this prefrontal site is functionally involved in mediating resolution among conflicting responses or among conflicting representations in working memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1997) 9 (4): 462–475.
Published: 01 July 1997
Abstract
View articletitled, Verbal Working Memory Load Affects Regional Brain Activation as Measured by PET
View
PDF
for article titled, Verbal Working Memory Load Affects Regional Brain Activation as Measured by PET
We report an experiment that assesses the effect of variations in memory load on brain activations that mediate verbal working memory. The paradigm that forms the basis of this experiment is the “ n -back” task in which subjects must decide for each letter in a series whether it matches the one presented n items back in the series. This task is of interest because it recruits processes involved in both the storage and manipulation of information in working memory. Variations in task difficulty were accomplished by varying the value of n . As n increased, subjects showed poorer behavioral performance as well as monotonically increasing magnitudes of brain activation in a large number of sites that together have been identified with verbal working-memory processes. By contrast, there was no reliable increase in activation in sites that are unrelated to working memory. These results validate the use of parametric manipulation of task variables in neuroimaging research, and they converge with the subtraction paradigm used most often in neuroimaging. In addition, the data support a model of working memory that includes both storage and executive processes that recruit a network of brain areas, all of which are involved in task performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1995) 7 (3): 337–356.
Published: 01 July 1995
Abstract
View articletitled, Spatial versus Object Working Memory: PET Investigations
View
PDF
for article titled, Spatial versus Object Working Memory: PET Investigations
We used positron emission tomography (PET) to answer the following question: Is working memory a unitary storage system, or does it instead include different storage buffers for different kinds of information? In Experiment 1, PET measures were taken while subjects engaged in either a spatial-memory task (retain the position of three dots for 3 sec) or an object-memory task (retain the identity of two objects for 3 sec). The results manifested a striking double dissociation, as the spatial task activated only right-hemisphere regions, whereas the object task activated primarily left-hemisphere regions. The spatial (right-hemisphere) regions included occipital, parietal, and prefrontal areas, while the object (left-hemisphere) regions included inferotemporal and parietal areas. Experiment 2 was similar to Experiment 1 except that the stimuli and trial events were identical for the spatial and object tasks; whether spatial or object memory was required was manipulated by instructions. The PET results once more showed a double dissociation, as the spatial task activated primarily right-hemisphere regions (again including occipital, parietal and prefrontal areas), whereas the object task activated only left-hemisphere regions (again including inferotemporal and parietal areas). Experiment 3 was a strictly behavioral study, which produced another double dissociation. It used the same tasks as Experiment 2, and showed that a variation in spatial similarity affected performance in the spatial but not the object task, whereas a variation in shape similarity affected performance in the object but not the spatial task. Taken together, the results of the three experiments clearly imply that different working-memory buffers are used for storing spatial and object information.