Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-8 of 8
Jon S. Simons
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (8): 1578–1598.
Published: 01 July 2024
FIGURES
| View All (6)
Abstract
View article
PDF
Individuals with aphantasia, a nonclinical condition typically characterized by mental imagery deficits, often report reduced episodic memory. However, findings have hitherto rested largely on subjective self-reports, with few studies experimentally investigating both objective and subjective aspects of episodic memory in aphantasia. In this study, we tested both aspects of remembering in aphantasic individuals using a custom 3-D object and spatial memory task that manipulated visuospatial perspective, which is considered to be a key factor determining the subjective experience of remembering. Objective and subjective measures of memory performance were taken for both object and spatial memory features under different perspective conditions. Surprisingly, aphantasic participants were found to be unimpaired on all objective memory measures, including those for object memory features, despite reporting weaker overall mental imagery experience and lower subjective vividness ratings on the memory task. These results add to newly emerging evidence that aphantasia is a heterogenous condition, where some aphantasic individuals may lack metacognitive awareness of mental imagery rather than mental imagery itself. In addition, we found that both participant groups remembered object memory features with greater precision when encoded and retrieved in the first person versus third person, suggesting a first-person perspective might facilitate subjective memory reliving by enhancing the representational quality of scene contents.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (4): 687–698.
Published: 05 March 2022
FIGURES
Abstract
View article
PDF
The qualities of remembered experiences are often used to inform “reality monitoring” judgments, our ability to distinguish real and imagined events. Previous experiments have tended to investigate only whether reality monitoring decisions are accurate or not, providing little insight into the extent to which reality monitoring may be affected by qualities of the underlying mnemonic representations. We used a continuous-response memory precision task to measure the quality of remembered experiences that underlie two different types of reality monitoring decisions: self/experimenter decisions that distinguish actions performed by participants and the experimenter and imagined/perceived decisions that distinguish imagined and perceived experiences. The data revealed memory precision to be associated with higher accuracy in both self/experimenter and imagined/perceived reality monitoring decisions, with lower precision linked with a tendency to misattribute self-generated experiences to external sources. We then sought to investigate the possible neurocognitive basis of these observed associations by applying brain stimulation to a region that has been implicated in precise recollection of personal events, the left angular gyrus. Stimulation of angular gyrus selectively reduced the association between memory precision and self-referential reality monitoring decisions, relative to control site stimulation. The angular gyrus may, therefore, be important for the mnemonic processes involved in representing remembered experiences that give rise to a sense of self-agency, a key component of “autonoetic consciousness” that characterizes episodic memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (11): 2328–2341.
Published: 01 October 2021
FIGURES
| View All (4)
Abstract
View article
PDF
Our recollections of past experiences can vary in both the number of specific event details accessible from memory and the precision with which such details are reconstructed. Prior neuroimaging evidence suggests the success and precision of episodic recollection to rely on distinct neural substrates during memory retrieval. In contrast, the specific encoding mechanisms supporting later memory precision, and whether they differ from those underlying successful memory formation in general, are currently unknown. Here, we combined continuous measures of memory retrieval with model-based analyses of behavioral and neuroimaging data to tease apart the encoding correlates of successful memory formation and mnemonic precision. In the MRI scanner, participants encoded object-scene displays and later reconstructed features of studied objects using a continuous scale. We observed overlapping encoding activity in inferior prefrontal and posterior perceptual regions to predict both which object features were later remembered versus forgotten and the precision with which they were reconstructed from memory. In contrast, hippocampal encoding activity significantly predicted the precision, but not overall success, of subsequent memory retrieval. The current results align with theoretical accounts proposing the hippocampus to be critical for representation of high-fidelity associative information and suggest a contribution of shared cortical encoding mechanisms to the formation of both accessible and precise memory representations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (5): 667–679.
Published: 01 May 2018
FIGURES
| View All (9)
Abstract
View article
PDF
People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new “foil” information encountered during a memory test. Time–frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000–1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (3): 447–457.
Published: 01 March 2008
Abstract
View article
PDF
Reality monitoring refers to the process of discriminating between internally and externally generated information. Two different tasks have often been used to assess this ability: (a) memory for perceived versus imagined stimuli; and (b) memory for participant- versus experimenter-performed operations. However, it is not known whether these two reality monitoring tasks share neural substrates. The present study involved use of a within-subjects functional magnetic resonance imaging design to examine common and distinct brain mechanisms associated with the two reality monitoring conditions. The sole difference between the two lay in greater activation in the medial anterior prefrontal cortex when recollecting whether the participant or the experimenter had carried out an operation during prior encoding as compared to recollecting whether an item had been perceived or imagined. This region has previously been linked with attending to mental states. Task differences were also reflected in the nature of functional connectivity relationships between the medial anterior and right lateral prefrontal cortex: There was a stronger correlation in activity between the two regions during recollection of self/experimenter context. This indicates a role for the medial anterior prefrontal cortex in the monitoring of retrieved information relating to internal or external aspects of context. Finally, given the importance of reality monitoring to understanding psychotic symptoms, brain activity was related to measures of proneness to psychosis and schizotypal traits. The observation of significant correlations between reduced medial anterior prefrontal signal and scores on such measures corroborates these theoretical links.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (6): 932–948.
Published: 01 June 2006
Abstract
View article
PDF
One of the least well understood regions of the human brain is rostral prefrontal cortex, approximating Brodmann's area 10. Here, we investigate the possibility that there are functional subdivisions within this region by conducting a meta-analysis of 104 functional neuroimaging studies (using positron emission tomography/functional magnetic resonance imaging). Studies involving working memory and episodic memory retrieval were disproportionately associated with lateral activations, whereas studies involving mentalizing (i.e., attending to one's own emotions and mental states or those of other agents) were disproportionately associated with medial activations. Functional variation was also observed along a rostral-caudal axis, with studies involving mentalizing yielding relatively caudal activations and studies involving multiple-task coordination yielding relatively rostral activations. A classification algorithm was trained to predict the task, given the coordinates of each activation peak. Performance was well above chance levels (74% for the three most common tasks; 45% across all eight tasks investigated) and generalized to data not included in the training set. These results point to considerable functional segregation within rostral prefrontal cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (6): 908–920.
Published: 01 July 2004
Abstract
View article
PDF
Source memory research suggests that attempting to remember specific contextual aspects surrounding prior stimulus encounters results in greater left prefrontal cortex (PFC) activity than simple item-based old/new recognition judgments. Here, we tested a complementary hypothesis that predicts increases in the right PFC with tasks requiring close monitoring of item familiarity. More specifically, we compared a judgment of frequency (JOF) task to an item memory task, in which the former required estimating the number of previous picture encounters and the latter required discriminating old from new exemplars of previously seen items. In comparison to standard old/new recognition, both source memory and the JOF task examined here require more precise mnemonic judgments. However, in contrast to source memory, cognitive models suggest the JOF task relies heavily upon item familiarity, not specific contextual recollections. Event-related fMRI demonstrated greater recruitment of right, not left, dorso-lateral and frontopolar PFC regions during the JOF compared to item memory task. These data suggest a role for right PFC in the close monitoring of the familiarity of objects, which becomes critical when contextual recollection is ineffective in satisfying a memory demand.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (4): 430–443.
Published: 15 May 2001
Abstract
View article
PDF
Previous studies have suggested differences in the neural substrates of recognition memory when the contributions of perceptual and semantic information are manipulated. In a within-subjects design PET study, we investigated the neural correlates of the following factors: material type (objects or faces), semantic knowledge (familiar or unfamiliar items), and perceptual similarity at study and test (identical or different pictures). There was consistent material-specific lateralization in frontal and temporal lobe regions when the retrieval of different types of nonverbal stimuli was compared, with objects activating bilateral areas and faces preferentially activating the right hemisphere. Retrieval of memories for nameable, familiar items was associated with increased activation in the left ventrolateral prefrontal cortex, while memory for unfamiliar items involved occipital regions. Recognition memory for different pictures of the same item at study and test produced blood flow increase in left inferior temporal cortex. These results have implications for our understanding of the neural correlates of perceptual and semantic contributions to recognition memory.