Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Jong H. Yoon
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Subthalamic Nucleus Activation Occurs Early during Stopping and Is Associated with Trait Impulsivity
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (4): 510–521.
Published: 01 April 2019
FIGURES
| View All (5)
Abstract
View article
PDF
The subthalamic nucleus (STN) is thought to be a central regulator of behavioral inhibition, which is thought to be a major determinant of impulsivity. Thus, it would be reasonable to hypothesize that STN function is related to impulsivity. However, it has been difficult to test this hypothesis because of the challenges in noninvasively and accurately measuring this structure's signal in humans. We utilized a novel approach for STN signal localization that entails identifying this structure directly on fMRI images for each individual participant in native space. Using this approach, we measured STN responses during the stop signal task in a sample of healthy adult participants. We confirmed that the STN exhibited selective activation during “Stop” trials. Furthermore, the magnitude of STN activation during successful Stop trials inversely correlated with individual differences in trait impulsivity as measured by a personality inventory. Time course analysis revealed that early STN activation differentiated successful from unsuccessful Stop trials, and individual differences in the magnitude of STN activation inversely correlated with stop signal RT, an estimate of time required to stop. These results are consistent with the STN playing a central role in inhibition and related behavioral proclivities, with implications for both normal range function and clinical syndromes of inhibitory dyscontrol. Moreover, the methods utilized in this study for measuring STN fMRI signal in humans may be gainfully applied in future studies to further our understanding of the role of the STN in regulating behavior and neuropsychiatric conditions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (6): 1238–1248.
Published: 01 June 2015
FIGURES
Abstract
View article
PDF
The ability to proactively control motor responses, particularly to overcome overlearned or automatic actions, is an essential prerequisite for adaptive, goal-oriented behavior. The substantia nigra (SN), an element of the BG, has figured prominently in current models of response selection. However, because of its small size and proximity to functionally distinct subcortical structures, it has been challenging to test the SN's involvement in response selection using conventional in vivo functional neuroimaging approaches. We developed a new fMRI localization method for directly distinguishing, on echo-planar images, the SN BOLD signal from that of neighboring structures, including the subthalamic nucleus (STN). Using this method, we tested the hypothesis that the SN supports the proactive control of response selection. We acquired high-resolution EPI volumes at 3 T from 16 healthy participants while they completed the Preparing to Overcome Prepotency task of proactive control. There was significantly elevated delay period signal selectively during high- compared with low-control trials in the SN. The STN did not show delay period activity in either condition. SN delay period signal was significantly inversely associated with task performance RTs across participants. These results suggest that our method offers a novel means for measuring SN BOLD responses, provides unique evidence of SN involvement in cognitive control in humans, and suggests a novel mechanism for proactive response selection.