Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
José Antonio Hinojosa
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (7): 1295–1310.
Published: 01 June 2021
FIGURES
| View All (8)
Abstract
View article
PDF
The level of processing hypothesis (LoP) proposes that the transition from unaware to aware visual perception is graded for low-level (i.e., energy, features) stimulus whereas dichotomous for high-level (i.e., letters, words, meaning) stimulus. In this study, we explore the behavioral patterns and neural correlates associated with different depths (i.e., low vs. high) of stimulus processing. The low-level stimulus condition consisted of identifying the color (i.e., blue/blueish vs. red/reddish) of the target, and the high-level stimulus condition consisted of identifying stimulus category (animal vs. object). Behavioral results showed that the levels of processing manipulation produced significant differences in both the awareness rating distributions and accuracy performances between tasks, the low-level task producing more intermediate subjective ratings and linearly increasing accuracy performances and the high-level task producing less intermediate ratings and a more nonlinear pattern for accuracies. The electrophysiological recordings revealed two correlates of visual awareness, an enhanced posterior negativity in the N200 time window (visual awareness negativity [VAN]), and an enhanced positivity in the P3 time window (late positivity [LP]). The analyses showed a double dissociation between awareness and the level of processing hypothesis manipulation: Awareness modulated VAN amplitudes only in the low-level color task, whereas LP amplitude modulations were observed only in the higher level category task. These findings are compatible with a two-stage microgenesis model of conscious perception, where an early elementary phenomenal sensation of the stimulus (i.e., the subjective perception of color) would be indexed by VAN, whereas stimulus' higher level properties (i.e., the category of the target) would be reflected in the LP in a later latency range.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (8): 1109–1128.
Published: 15 November 2001
Abstract
View article
PDF
Several studies on hemodynamic brain activity indicate that emotional visual stimuli elicit greater activation than neutral stimuli in attention-related areas such as the anterior cingulate cortex (ACC) and the visual association cortex (VAC). In order to explore the temporo-spatial characteristics of the interaction between attention and emotion, two processes characterized by involving short and rapid phases, event-related potentials (ERPs) were measured in 29 subjects using a 60-electrode array and the LORETA source localization software. A cue/target paradigm was employed in order to investigate both expectancy-related and input processing related attention. Four categories of stimuli were presented to subjects: positive arousing, negative arousing, relaxing, and neutral. Three attention-related components were finally analyzed: N280pre (from pretarget ERPs), P200post and P340post (both from posttarget ERPs). N280pre had a prefrontal focus (ACC and/or medial prefrontal cortex) and presented significantly lower amplitudes in response to cues announcing negative targets. This result suggests a greater capacity of nonaversive stimuli to generate expectancy-related attention. P200post and P340post were both elicited in the VAC, and showed their highest amplitudes in response to negative- and to positive-arousing stimuli, respectively. The origin of P200post appears to be located dorsally with respect to the clear ventral-stream origin of P340post. The conjunction of temporal and spatial characteristics of P200post and P340post leads to the deduction that input processing-related attention associated with emotional visual stimulation involves an initial, rapid, and brief ‘early’ attentional response oriented to rapid motor action, being more prominent towards negative stimulation. This is followed by a slower but longer ‘late’ attentional response oriented to deeper processing, elicited to a greater extent by appetitive stimulation.