Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Josef Parvizi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (12): 2548–2558.
Published: 05 November 2021
FIGURES
Abstract
View article
PDF
Engagement of posterior parietal cortex (PPC) in visuospatial attention and arithmetic processing has been extensively documented using neuroimaging methods. Numerous studies have suggested a close connection between visuospatial attention and arithmetic processing. However, the extant evidence in humans stems from neuroimaging methods that have relied on group analyses without much knowledge about the profile of neurophysiological engagement within localized neuronal populations at the individual brain level. Hence, it has remained unclear if the overlap of two functions in the PPC is the product of averaging, or they truly stem from a common profile of activity within the same neuronal populations in the human PPC. In the current study, we leveraged the anatomical precision and high signal-to-noise ratio of intracranial electrocorticography and probed the engagement of discrete PPC neuronal populations in seven neurosurgical patients ( n = 179 total PPC sites covered; 26 sites on average per individual participant). We aimed to study the extent of parietal activations within each individual brain during visuospatial attention versus arithmetic tasks and the profile of electrophysiological responses within a given recording site during these tasks. Our findings indicated that about 40% of PPC sites did not respond to either visuospatial attention or arithmetic stimuli—or episodic memory conditions that were used as an adjunct control condition. Of those that were activated during either visuospatial attention or arithmetic conditions, a large majority showed overlapping responses during both visuospatial attention and arithmetic conditions. Most interestingly, responses during arithmetic processing were greatest in sites along the intraparietal sulcus region showing preference to contralateral, instead of ipsilateral, visual probes in the visuospatial attention task. Our results provide novel data about the relationship between numerical and spatial orientation at the neuronal population level and shed light on the complex functional organization of the PPC that could not be attained with noninvasive methods.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (12): 1757–1772.
Published: 01 December 2018
FIGURES
| View All (5)
Abstract
View article
PDF
Elementary arithmetic requires a complex interplay between several brain regions. The classical view, arising from fMRI, is that the intraparietal sulcus (IPS) and the superior parietal lobe (SPL) are the main hubs for arithmetic calculations. However, recent studies using intracranial electroencephalography have discovered a specific site, within the posterior inferior temporal cortex (pITG), that activates during visual perception of numerals, with widespread adjacent responses when numerals are used in calculation. Here, we reexamined the contribution of the IPS, SPL, and pITG to arithmetic by recording intracranial electroencephalography signals while participants solved addition problems. Behavioral results showed a classical problem size effect: RTs increased with the size of the operands. We then examined how high-frequency broadband (HFB) activity is modulated by problem size. As expected from previous fMRI findings, we showed that the total HFB activity in IPS and SPL sites increased with problem size. More surprisingly, pITG sites showed an initial burst of HFB activity that decreased as the operands got larger, yet with a constant integral over the whole trial, thus making these signals invisible to slow fMRI. Although parietal sites appear to have a more sustained function in arithmetic computations, the pITG may have a role of early identification of the problem difficulty, beyond merely digit recognition. Our results ask for a reevaluation of the current models of numerical cognition and reveal that the ventral temporal cortex contains regions specifically engaged in mathematical processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (9): 1315–1322.
Published: 01 September 2018
FIGURES
Abstract
View article
PDF
Past research has identified anatomically specific sites within the posterior inferior temporal gyrus (PITG) and the intraparietal sulcus (IPS) areas that are engaged during arithmetic processing. Although a small region of the PITG (known as the number form area) is selectively engaged in the processing of numerals, its surrounding area is activated during both digit and number word processing. In eight participants with intracranial electrodes, we compared the timing and selectivity of electrophysiological responses in the number form area-surround and IPS regions during arithmetic processing with digits and number words. Our recordings revealed stronger electrophysiological responses in the high-frequency broadband range in both regions to digits than number words, with the difference that number words elicited delayed activity in the IPS but not PITG. Our findings of distinct profiles of responses in the PITG and the IPS to digits compared with number words provide novel information that is relevant to existing theoretical models of mathematical cognition.