Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Joseph F. X. DeSouza
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (9): 1789–1800.
Published: 01 September 2015
FIGURES
| View All (6)
Abstract
View article
PDF
Performing multiple tasks concurrently places a load on limited attentional resources and results in disrupted task performance. Although human neuroimaging studies have investigated the neural correlates of attentional load, how attentional load affects task processing is poorly understood. Here, task-related neural activity was investigated using fMRI with conventional univariate analysis and multivariate pattern analysis (MVPA) while participants performed blocks of prosaccades and antisaccades, either with or without a rapid serial visual presentation (RSVP) task. Performing prosaccades and antisaccades with RSVP increased error rates and RTs, decreased mean activation in frontoparietal brain areas associated with oculomotor control, and eliminated differences in activation between prosaccades and antisaccades. However, task identity could be decoded from spatial patterns of activation both in the absence and presence of an attentional load. Furthermore, in the FEFs and intraparietal sulcus, these spatial representations were found to be similar using cross-trial-type MVPA, which suggests stability under attentional load. These results demonstrate that attentional load may disrupt the strength of task-related neural activity, rather than the identity of task representations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (9): 1483–1496.
Published: 01 September 2005
Abstract
View article
PDF
Everyday life typically requires behavior that involves far more than simple stimulus-response associations. Environmental cues are often ambiguous and require different actions depending on the situation. The prefrontal cortex (PFC) is thought to be crucial for this flexible control of behavior. An important task that probes this ability is the antisaccade task in which subjects have to suppress a glance towards a suddenly presented peripheral stimulus and instead look away from the stimulus to its mirror location. Here we recorded the activity of PFC neurons in monkeys trained to alternate between blocks of prosaccade and antisaccade trials with no external instruction cues. We found that the activity of many neurons was different between the two tasks during the fixation period before the peripheral stimulus was presented. These differences were already present on the first correct trials after a task switch. The activity of these neurons also discriminated between correct responses and errors. We hypothesize that the PFC provides bias signals to saccade-related areas that are necessary to preset the oculomotor system for different tasks.