Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Joseph M. Galea
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (1): 96–110.
Published: 01 January 2016
FIGURES
| View All (5)
Abstract
View article
PDF
The temporal preparation of motor responses to external events (temporal preparation) relies on internal representations of the accumulated elapsed time (temporal representations) before an event occurs and on estimates about its most likely time of occurrence (temporal expectations). The precision (inverse of uncertainty) of temporal preparation, however, is limited by two sources of uncertainty. One is intrinsic to the nervous system and scales with the length of elapsed time such that temporal representations are least precise for longest time durations. The other is external and arises from temporal variability of events in the outside world. The precision of temporal expectations thus decreases if events become more variable in time. It has long been recognized that the processing of time durations within the range of hundreds of milliseconds (interval timing) strongly depends on dopaminergic (DA) transmission. The role of DA for the precision of temporal preparation in humans, however, remains unclear. This study therefore directly assesses the role of DA in the precision of temporal preparation of motor responses in healthy humans. In a placebo-controlled double-blind design using a selective D2-receptor antagonist (sulpiride) and D1/D2 receptor antagonist (haloperidol), participants performed a variable foreperiod reaching task, under different conditions of internal and external temporal uncertainty. DA blockade produced a striking impairment in the ability of extracting temporal expectations across trials and on the precision of temporal representations within a trial. Large Weber fractions for interval timing, estimated by fitting subjective hazard functions, confirmed that this effect was driven by an increased uncertainty in the way participants were experiencing time. This provides novel evidence that DA regulates the precision with which we process time when preparing for an action.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (2): 365–376.
Published: 01 February 2015
FIGURES
Abstract
View article
PDF
Humans carry out many daily tasks in a seemingly automatic fashion. However, when unexpected changes in the environment occur, we have the capacity to inhibit prepotent behavior and replace it with an alternative one. Such behavioral flexibility is a hallmark of executive functions. The neurotransmitter dopamine is known to be crucial for fast, efficient, and accurate cognitive flexibility. Despite the perceived similarities between cognitive and motor flexibility, less is known regarding the role of dopamine within the motor domain. Therefore, the aim of this study was to determine the role of dopamine in motor flexibility. In a double-blind, five-session, within-subject pharmacological experiment, human participants performed an RT task within a probabilistic context that was either predictable or unpredictable. The probabilistic nature of the predictable context resulted in prediction errors. This required participants to replace the prepotent or prepared action with an unprepared action (motor flexibility). The task was overlearned, and changes in context were explicitly instructed, thus controlling for contributions from other dopamine-related processes such as probabilistic or reversal learning and interactions with other types of uncertainty. We found that dopamine receptor blockade by high-dose haloperidol (D1/D2 dopamine receptors) impaired participants' ability to react to unexpected events occurring in a predictable context, which elicit large prediction errors and necessitate motor flexibility. This effect was not observed with selective D2 receptor blockade (sulpiride), with a general increase in tonic dopamine levels (levodopa), or during an unpredictable context, which evoked minimal prediction error. We propose that dopamine is vital in responding to low-level prediction errors about stimulus outcome that requires motor flexibility.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (4): 558–570.
Published: 01 April 2013
FIGURES
Abstract
View article
PDF
The pFC has a crucial role in cognitive control, executive function, and sensory processing. Functional imaging, neurophysiological, and animal studies provide evidence for a functional connectivity between the dorsolateral pFC (DLPFC) and the primary motor cortex (M1) during free choice but not instructed choice selection tasks. In this study, twin coil, neuronavigated TMS was used to examine the precise timing of the functional interaction between human left DLPFC and ipsilateral M1 during the execution of a free/specified choice selection task involving the digits of the right hand. In a thumb muscle that was not involved in the task, a conditioning pulse to the left DLPFC enhanced the excitability of the ipsilateral M1 during free selection more than specified selection 100 msec after presentation of the cue; the opposite effect was seen at 75 msec. However, the difference between free and externally specified conditions disappeared when a task-specific muscle was investigated. In this case, the influence from DLPFC was dominated by task involvement rather than mode of selection, suggesting that other processes related to movement execution were also operating. Finally, we show that the effects were spatially specific because they were absent when an adjacent area of DLPFC was stimulated. These results reveal temporally and spatially selective interactions between BA 46 and M1 that are both task and muscle specific.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (12): 3757–3766.
Published: 01 December 2011
FIGURES
Abstract
View article
PDF
Action observation (AO), observing another individual perform an action, has been implicated in several higher cognitive processes including forming basic motor memories. Previous work has shown that physical practice (PP) results in cortical motor representational changes, referred to as use-dependent plasticity (UDP), and that AO combined with PP potentiates UDP in both healthy adults and stroke patients. In humans, AO results in activation of the ventral premotor cortex (PMv), however, whether this PMv activation has a functional contribution to UDP is not known. Here, we studied the effects disruption of PMv has on UDP when subjects performed PP combined with AO (PP + AO). Subjects participated in two randomized crossover sessions measuring the amount of UDP resulting from PP + AO while receiving disruptive (1 Hz) TMS over the fMRI-activated PMv or over frontal cortex (Sham). We found that, unlike the sham session, disruptive TMS over PMv reduced the beneficial contribution of AO to UDP. To ensure that disruption of PMv was specifically interfering with the contribution of AO and not PP, subjects completed two more control sessions where they performed only PP while receiving disruptive TMS over PMv or frontal cortex. We found that the magnitude of UDP for both control sessions was similar to PP + AO with TMS over PMv. These findings suggest that the fMRI activation found in PMv during AO studies is functionally relevant to task performance, at least for the beneficial effects that AO exerts over motor training.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (6): 1158–1164.
Published: 01 June 2010
FIGURES
Abstract
View article
PDF
In explicit sequence learning tasks, an improvement in performance (skill) typically occurs after sleep—leading to the recent literature on sleep-dependent motor consolidation. Consolidation can also be facilitated during wakefulness if declarative knowledge for the sequence is reduced through a secondary cognitive task. Accordingly, declarative and procedural consolidation processes appear to mutually interact. Here we used TMS to test the hypothesis that functions in the dorsolateral prefrontal cortex (DLPFC) that support declarative memory formation indirectly reduce the formation of procedural representations. We hypothesize that disrupting the DLPFC immediately after sequence learning would degrade the retention or the consolidation of the sequence within the declarative memory system and thus facilitate consolidation within procedural memory systems, evident as wakeful off-line skill improvement. Inhibitory theta-burst TMS was applied to the left DLPFC ( n = 10), to the right DLPFC ( n = 10), or to an occipital cortical control site ( n = 10) immediately after training on the serial reaction time task (SRTT). All groups were retested after eight daytime hours without sleep. TMS of either left or right DLPFC lead to skill improvements on the SRTT. Increase in skill was greater following right DLPFC stimulation than left DLPFC stimulation; there was no improvement in skill for the control group. Across all participants, free recall of the sequence was inversely related to the improvements in performance on the SRTT. These results support the hypothesis of interference between declarative and procedural consolidation processes and are discussed in the framework of the interactions between memory systems.