Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-9 of 9
Joseph T. Devlin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (6): 1092–1103.
Published: 01 June 2020
FIGURES
| View All (4)
Abstract
View article
PDF
Successful perception of speech in everyday listening conditions requires effective listening strategies to overcome common acoustic distortions, such as background noise. Convergent evidence from neuroimaging and clinical studies identify activation within the temporal lobes as key to successful speech perception. However, current neurobiological models disagree on whether the left temporal lobe is sufficient for successful speech perception or whether bilateral processing is required. We addressed this issue using TMS to selectively disrupt processing in either the left or right superior temporal gyrus (STG) of healthy participants to test whether the left temporal lobe is sufficient or whether both left and right STG are essential. Participants repeated keywords from sentences presented in background noise in a speech reception threshold task while receiving online repetitive TMS separately to the left STG, right STG, or vertex or while receiving no TMS. Results show an equal drop in performance following application of TMS to either left or right STG during the task. A separate group of participants performed a visual discrimination threshold task to control for the confounding side effects of TMS. Results show no effect of TMS on the control task, supporting the notion that the results of Experiment 1 can be attributed to modulation of cortical functioning in STG rather than to side effects associated with online TMS. These results indicate that successful speech perception in everyday listening conditions requires both left and right STG and thus have ramifications for our understanding of the neural organization of spoken language processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (6): 1259–1274.
Published: 01 June 2015
FIGURES
| View All (8)
Abstract
View article
PDF
Cognitive theories on reading propose that the characteristics of written stimuli determine how they are processed in the brain. However, whether the brain distinguishes between regular words, irregular words, and pseudowords already at an early stage of the reading process is still subject to debate. Here we used chronometric TMS to address this issue. During the first 140 msec of regular word, irregular word, and pseudoword reading, TMS was used to disrupt the function of the ventral occipitotemporal, posterior middle temporal, and supramarginal gyri, which are key areas involved in orthographic, semantic, and phonological processing, respectively. Early TMS stimulation delivered on posterior middle temporal and supramarginal gyri affected regular and irregular word, but not pseudoword, reading. In contrast, ventral occipitotemporal disruption affected both word and pseudoword reading. We thus found evidence for an early distinction between word and pseudoword processing in the semantic and phonological systems, but not in the orthographic system.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (3): 593–604.
Published: 01 March 2015
FIGURES
Abstract
View article
PDF
This study investigated how the left inferior parietal lobule (IPL) contributes to visual word recognition. We used repetitive TMS to temporarily disrupt neural information processing in two anatomical fields of the IPL, namely, the angular (ANG) and supramarginal (SMG) gyri, and observed the effects on reading tasks that focused attention on either the meaning or sounds of written words. Relative to no TMS, stimulation of the left ANG selectively slowed responses in the meaning, but not sound, task, whereas stimulation of the left SMG affected responses in the sound, but not meaning, task. These results demonstrate that ANG and SMG doubly dissociate in their contributions to visual word recognition. We suggest that this functional division of labor may be understood in terms of the distinct patterns of cortico-cortical connectivity resulting in separable functional circuits.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (10): 2369–2386.
Published: 01 October 2010
FIGURES
| View All (6)
Abstract
View article
PDF
Suppressing irrelevant words is essential to successful speech production and is expected to involve general control mechanisms that reduce interference from task-unrelated processing. To investigate the neural mechanisms that suppress visual word interference, we used fMRI and a Stroop task, using a block design with an event-related analysis. Participants indicated with a finger press whether a visual stimulus was colored pink or blue. The stimulus was either the written word “BLUE,” the written word “PINK,” or a string of four Xs, with word interference introduced when the meaning of the word and its color were “incongruent” (e.g., BLUE in pink hue) relative to congruent (e.g., BLUE in blue) or neutral (e.g., XXXX in pink). The participants also made color decisions in the presence of spatial interference rather than word interference (i.e., the Simon task). By blocking incongruent, congruent, and neutral trials, we identified activation related to the mechanisms that suppress interference as that which was greater at the end relative to the start of incongruency. This highlighted the role of the left head of caudate in the control of word interference but not spatial interference. The response in the left head of caudate contrasted to bilateral inferior frontal activation that was greater at the start than at the end of incongruency, and to the dorsal anterior cingulate gyrus which responded to a change in the motor response. Our study therefore provides novel insights into the role of the left head of caudate in the mechanisms that suppress word interference.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (4): 739–750.
Published: 01 April 2010
FIGURES
| View All (4)
Abstract
View article
PDF
The debate regarding the role of ventral occipito-temporal cortex (vOTC) in visual word recognition arises, in part, from difficulty delineating the functional contributions of vOTC as separate from other areas of the reading network. Here, we investigated the feasibility of using TMS to interfere with vOTC processing in order to explore its specific contributions to visual word recognition. Three visual lexical decision experiments were conducted using neuronavigated TMS. The first demonstrated that repetitive stimulation of vOTC successfully slowed word, but not nonword, responses. The second confirmed and extended these findings by demonstrating the effect was specific to vOTC and not present in the adjacent lateral occipital complex. The final experiment used paired-pulse TMS to investigate the time course of vOTC processing for words and revealed activation starting as early as 80–120 msec poststimulus onset—significantly earlier than that expected based on electrophysiological and magnetoencephalography studies. Taken together, these results clearly indicate that TMS can be successfully used to stimulate parts of vOTC previously believed to be inaccessible and provide a new tool for systematically investigating the information processing characteristics of vOTC. In addition, the findings provide strong evidence that lexical status and frequency significantly affect vOTC processing, findings difficult to reconcile with prelexical accounts of vOTC function.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (6): 911–922.
Published: 01 June 2006
Abstract
View article
PDF
Studies of skilled reading [Price, C. J., & Mechelli, A. Reading and reading disturbance. Current Opinion in Neurobiology, 15, 231–238, 2005], its acquisition in children [Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., et al. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52, 101–110, 2002; Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. Development of neural mechanisms for reading. Nature Neuroscience, 6, 767–773, 2003], and its impairment in patients with pure alexia [Leff, A. P., Crewes, H., Plant, G. T., Scott, S. K., Kennard, C., & Wise, R. J. The functional anatomy of single word reading in patients with hemianopic and pure alexia. Brain, 124, 510–521, 2001] all highlight the importance of the left posterior fusiform cortex in visual word recognition. We used visual masked priming and functional magnetic resonance imaging to elucidate the specific functional contribution of this region to reading and found that (1) unlike words, repetition of pseudowords (“solst-solst”) did not produce a neural priming effect in this region, (2) orthographically related words such as “corner-corn” did produce a neural priming effect, but (3) this orthographic priming effect was reduced when prime-target pairs were semantically related (“teacher-teach”). These findings conflict with the notion of stored visual word forms and instead suggest that this region acts as an interface between visual form information and higher order stimulus properties such as its associated sound and meaning. More importantly, this function is not specific to reading but is also engaged when processing any meaningful visual stimulus.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (9): 1552–1561.
Published: 01 November 2004
Abstract
View article
PDF
Functional neuroimaging has demonstrated reduced activation correlated with behavioral priming effects, a finding generally interpreted in terms of facilitated retrieval of target items in the context of related primes. Without a neutral prime, however, one cannot separate facilitatory effects of related primes from inhibitory effects of unrelated primes. Here we report an auditory semantic priming paradigm with congruent (“The boy bounced the ball ”), neutral (“The next item is ball ”), and incongruent (“Pasta is my favorite kind of ball ”) sentence trials. As previously reported, reduced left inferior prefrontal cortex activation was observed for congruent relative to incongruent trials; however, the neutral condition allowed us to show that the effect arose from increased activation in the incongruent condition rather than reduced activation for congruent trials. Our results suggest that the left inferior prefrontal cortex inhibits interference from prepotent representations in order to select a task-appropriate target, and is consistent with its broader role in behavioral inhibition.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (1): 71–84.
Published: 01 January 2003
Abstract
View article
PDF
The involvement of the left inferior prefrontal cortex (LIPC) in phonological processing is well established from both lesion-deficit studies with neurological patients and functional neuroimaging studies of normals. Its involvement in semantic processing, on the other hand, is less clear. Although many imaging studies have demonstrated LIPC activation during semantic tasks, this may be due to implicit phonological processing. This article presents two experiments investigating semantic functions in the LIPC. Results from a functional magnetic resonance imaging experiment demonstrated that both semantic and phonological processing activated a common set of areas within this region. In addition, there was a reliable increase in activation for semantic relative to phonological decisions in the anterior LIPC while the opposite comparison (phonological vs. semantic decisions) revealed an area of enhanced activation within the posterior LIPC. A second experiment used transcranial magnetic stimulation (TMS) to temporarily interfere with neural information processing in the anterior portion of the LIPC to determine whether this region was essential for normal semantic performance. Both repetitive and single pulse TMS significantly slowed subjects' reactions for the semantic but not for the perceptual control task. Our results clarify the functional anatomy of the LIPC by demonstrating that anterior and posterior regions contribute to both semantic and phonological processing, albeit to different extents. In addition, the findings go beyond simply establishing a correlation between semantic processing and activation in the LIPC and demonstrate that a transient disruption of processing selectively interfered with semantic processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1998) 10 (1): 77–94.
Published: 01 January 1998
Abstract
View article
PDF
Category-specific semantic impairments have been explained in terms of preferential damage to different types of features (e.g., perceptual vs. functional). This account is compatible with cases in which the impairments were the result of relatively focal lesions, as in herpes encephalitis. Recently, however, there have been reports of category-specific impairments associated with Alzheimer's disease, in which there is more widespread, patchy damage. We present experiments with a connectionist model that show how ficategory-specificfl impairments can arise in cases of both localized and wide-spread damage; in this model, types of features are topographically organized, but specific categories are not. These effects mainly depend on differences between categories in the distribution of correlated features. The model's predictions about degree of impairment on natural kinds and artifacts over the course of semantic deterioration are shown to be consistent with existing patient data. The model shows how the probabilistic nature of damage in Alzheimer's disease interacts with the structure of semantic memory to yield different patterns of impairment between patients and categories over time.