Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Julie Duque
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (2): 269–278.
Published: 01 February 2014
FIGURES
Abstract
View article
PDF
Previous studies have identified two inhibitory mechanisms that operate during action selection and preparation. One mechanism, competition resolution, is manifest in the inhibition of the nonselected response and attributed to competition between candidate actions. The second mechanism, impulse control, is manifest in the inhibition of the selected response and is presumably invoked to prevent premature response. To identify constraints on the operation of these two inhibitory mechanisms, we manipulated the effectors used for the response alternatives, measuring changes in corticospinal excitability with motor-evoked potentials to TMS. Inhibition of the selected response (impulse control) was independent of the task context, consistent with a model in which this form of inhibition is automatically triggered as part of response preparation. In contrast, inhibition of the nonselected response (competition resolution) was context-dependent. Inhibition of the nonselected response was observed when the response alternatives involved movements of the upper limbs but was absent when one response alternative involved an upper limb and the other involved a lower limb. Interestingly, competition resolution for pairs of upper limbs did not require homologous effectors, observed when a left index finger response was pitted with either a nonhomologous right index finger movement or a right arm movement. These results argue against models in which competition resolution is viewed as a generic or fully flexible process, as well as models based on strong anatomical constraints. Rather, they are consistent with models in which inhibition for action selection is constrained by the similarity between the potential responses, perhaps reflecting an experience-dependent mechanism sensitive to the past history of competitive interactions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (10): 1634–1648.
Published: 01 October 2013
FIGURES
| View All (5)
Abstract
View article
PDF
Top–down control is critical to select goal-directed actions in changeable environments, particularly when several conflicting options compete for selection. In humans, this control system is thought to involve an inhibitory mechanism that suppresses the motor representation of unwanted responses to favor selection of the most appropriate action. Here, we aimed to evaluate the role of a region of the medial frontal cortex, the pre-SMA, in this form of inhibition by using a double coil TMS protocol combining repetitive TMS (rTMS) over the pre-SMA and a single-pulse TMS over the primary motor cortex (M1) during a visuomotor task that required participants to choose between a left or right button press according to an imperative cue. M1 stimulation allowed us to assess changes in motor excitability related to selected and nonselected (unwanted) actions, and rTMS was used to produce transient disruption of pre-SMA functioning. We found that when rTMS was applied over pre-SMA, inhibition of the nonselected movement representation was reduced. Importantly, this effect was only observed when the imperative cue produced a substantial amount of competition between the response alternatives. These results are consistent with previous studies pointing to a role of pre-SMA in competition resolution. In addition, our findings indicate that this function of pre-SMA involves the control of inhibitory influences directed at unwanted action representations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (3): 526–542.
Published: 01 March 2010
FIGURES
| View All (7)
Abstract
View article
PDF
One remarkable aspect of the human motor repertoire is the multitude of bimanual actions it contains. Still, the neural correlates of coordinated movements, in which the two hands share a common goal, remain debated. To address this issue, we designed two bimanual circling tasks that differed only in terms of goal conceptualization: a “coordination” task that required movements of both hands to adapt to each other to reach a common goal and an “independent” task that imposed a separate goal to each hand. fMRI allowed us to pinpoint three areas located in the right hemisphere that were more strongly activated in the coordination condition: the superior temporal gyrus (STG), the SMA, and the primary motor cortex (M1). We then used transcranial magnetic stimulation (TMS) to disrupt transiently the function of those three regions to determine their causal role in bimanual coordination. Right STG virtual lesions impaired bimanual coordination, whereas TMS to right M1 enhanced hand independence. TMS over SMA, left STG, or left M1 had no effect. The present study provides direct insight into the neural correlates of coordinated bimanual movements and highlights the role of right STG in such bimanual movements.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (2): 204–213.
Published: 01 February 2007
Abstract
View article
PDF
Interhemispheric inhibition (IHI) between motor cortical areas is thought to play a critical role in motor control and could influence manual dexterity. The purpose of this study was to investigate IHI preceding movements of the dominant and nondominant hands of healthy volunteers. Movement-related IHI was studied by means of a double-pulse transcranial magnetic stimulation protocol in right-handed individuals in a simple reaction time paradigm. IHI targeting the motor cortex contralateral (IHI c ) and ipsilateral (IHI i ) to each moving finger was determined. IHI c was comparable after the go signal, a long time preceding movement onset, in both hands. Closer to movement onset, IHI c reversed into facilitation for the right dominant hand but remained inhibitory for left nondominant hand movements. IHI i displayed a nearly constant inhibition with a trough early in the premovement period in both hands. In conclusion, our results unveil a more important modulation of interhemispheric interactions during generation of dominant than nondominant hand movements. This modulation essentially consisted of a shift from a balanced IHI at rest to an IHI predominantly directed toward the ipsilateral primary motor cortex at movement onset. Such a mechanism might release muscles from inhibition in the contralateral primary motor cortex while preventing the occurrence of the mirror activity in ipsilateral primary motor cortex and could therefore contribute to intermanual differences in dexterity.