Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Justin N. Wood
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (9): 2336–2351.
Published: 01 September 2011
FIGURES
| View All (7)
Abstract
View articletitled, Spatial Attention Determines the Nature of Nonverbal Number Representation
View
PDF
for article titled, Spatial Attention Determines the Nature of Nonverbal Number Representation
Coordinated studies of adults, infants, and nonhuman animals provide evidence for two systems of nonverbal number representation: a “parallel individuation” system that represents individual items and a “numerical magnitude” system that represents the approximate cardinal value of a group. However, there is considerable debate about the nature and functions of these systems, due largely to the fact that some studies show a dissociation between small (1–3) and large (>3) number representation, whereas others do not. Using event-related potentials, we show that it is possible to determine which system will represent the numerical value of a small number set (1–3 items) by manipulating spatial attention. Specifically, when attention can select individual objects, an early brain response (N1) scales with the cardinal value of the display, the signature of parallel individuation. In contrast, when attention cannot select individual objects or is occupied by another task, a later brain response (P2p) scales with ratio, the signature of the approximate numerical magnitude system. These results provide neural evidence that small numbers can be represented as approximate numerical magnitudes. Further, they empirically demonstrate the importance of early attentional processes to number representation by showing that the way in which attention disperses across a scene determines which numerical system will deploy in a given context.