Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Jutta L. Mueller
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (8): 1467–1487.
Published: 01 July 2022
FIGURES
| View All (7)
Abstract
View article
PDF
Successful language processing entails tracking (morpho)syntactic relationships between distant units of speech, so-called nonadjacent dependencies (NADs). Many cues to such dependency relations have been identified, yet the linguistic elements encoding them have received little attention. In the present investigation, we tested whether and how these elements, here syllables, consonants, and vowels, affect behavioral learning success as well as learning-related changes in neural activity in relation to item-specific NAD learning. In a set of two EEG studies with adults, we compared learning under conditions where either all segment types ( Experiment 1 ) or only one segment type ( Experiment 2 ) was informative. The collected behavioral and ERP data indicate that, when all three segment types are available, participants mainly rely on the syllable for NAD learning. With only one segment type available for learning, adults also perform most successfully with syllable-based dependencies. Although we find no evidence for successful learning across vowels in Experiment 2 , dependencies between consonants seem to be identified at least passively at the phonetic-feature level. Together, these results suggest that successful item-specific NAD learning may depend on the availability of syllabic information. Furthermore, they highlight consonants' distinctive power to support lexical processes. Although syllables show a clear facilitatory function for NAD learning, the underlying mechanisms of this advantage require further research.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (8): 1654–1671.
Published: 01 August 2014
FIGURES
Abstract
View article
PDF
Sentences are easier to memorize than ungrammatical word strings, a phenomenon known as the sentence superiority effect. Yet, it is unclear how higher-order linguistic information facilitates verbal working memory and how this is implemented in the neural system. The goal of the current fMRI study was to specify the brain mechanisms underlying the sentence superiority effect during encoding and during maintenance in working memory by manipulating syntactic structure and working memory load. The encoding of sentence material, as compared with the encoding of ungrammatical word strings, recruited not only inferior frontal (BA 47) and anterior temporal language-related areas but also the medial-temporal lobe, which is not classically reported for language tasks. During maintenance, it was sentence structure as contrasted with ungrammatical word strings that led to activation decrease in Broca's area, SMA, and parietal regions. Furthermore, in Broca's area, an interaction effect revealed a load effect for ungrammatical word strings but not for sentences. The sentence superiority effect, thus, is neurally reflected in a twofold pattern, consisting of increased activation in classical language as well as memory areas during the encoding phase and decreased maintenance-related activation. This pattern reflects how chunking, based on sentential syntactic and semantic information, alleviates rehearsal demands and thus leads to improved working memory performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (5): 814–821.
Published: 01 May 2013
FIGURES
Abstract
View article
PDF
Learning takes place throughout lifetime but differs in infants and adults because of the development of the PFC, a brain region responsible for cognitive control. To test this hypothesis, adults were investigated in a language learning paradigm under inhibitory, cathodal transcranial direct current stimulation over PFC. The experiment included a learning session interspersed with test phases and a test-only session. The stimulus material required the learning of grammatical dependencies between two elements in a novel language. In a parallel design, cathodal transcranial direct current stimulation over the left PFC, right PFC, or sham stimulation was applied during the learning session but not during the test-only session. Event-related brain potentials (ERPs) were recorded during both sessions. Whereas no ERP learning effects were observed during the learning session, different ERP learning effects as a function of prior stimulation type were found during the test-only session, although behavioral learning success was equal across conditions. With sham stimulation, the ERP learning effect was reflected in a centro-parietal N400-like negativity indicating lexical processes. Inhibitory stimulation over the left PFC, but not over the right PFC, led to a late positivity similar to that previously observed in prelinguistic infants indicating associative learning. The present data demonstrate that adults can learn with and without cognitive control using different learning mechanisms. In the presence of cognitive control, adult language learning is lexically guided, whereas it appears to be associative in nature when PFC control is downregulated.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (5): 892–905.
Published: 01 May 2008
Abstract
View article
PDF
Humans can derive sequential dependencies from unfamiliar artificial speech within several of minutes of exposure. However, there is an ongoing debate about the nature of the underlying learning processes. In a widely discussed study Peña et al. [Peña, M., Bonatti, L. L., Nespor, M., & Mehler, J. Signal-driven computations in speech processing. Science, 298, 604–607, 2002] argued for the importance of subtle acoustic cues in the signal, such as pauses, in order to switch between two computational mechanisms, which are conceptualized as rule-based versus statistical. The present study was aimed to approach this problem by recording event-related potentials in response to correct and incorrect phrases consisting of bisyllabics after short exposure to either rule-based or random artificial speech streams. Rule-based streams contained dependencies of the form AXC, whereby A elements reliably predicted the C elements and X elements were variable. Participants were exposed to four input and test phases. Two of the input streams were rule-based and contained either only probabilistic information related to the distribution of the AXC stimuli or an additional acoustic cue indicating the boundaries of relevant units. The other two streams were random variations of the rule-based streams. During the test phase in the condition with pause cues, an early negativity and a later positivity emerged for correct and incorrect items in comparison to their acoustically identical counterparts, which were presented after the random control condition. In the noncued condition, only negativities were seen. The timing and the scalp distribution of the negativities were different for correct and incorrect sequences in both the cued and the noncued conditions. The results are interpreted in support of a view of grammatical learning in which both distributional and acoustic cues may contribute to different aspects of syntactic learning.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (1): 121–134.
Published: 01 January 2006
Abstract
View article
PDF
This study reports the results of two behavioral and two event-related brain potential experiments examining the processing of inflected words in second-language (L2) learners with Russian as their native language. Two different subsystems of German inflection were studied, participial inflection and noun plurals. For participial forms, L2 learners were found to widely generalize the -t suffixation rule in a nonce-word elicitation task, and in the event-related brain potential experiment, they showed an anterior negativity followed by a P600-both results resembling previous findings from native speakers of German on the same materials. For plural formation, the L2 learners displayed different preference patterns for regular and irregular forms in an off-line plural judgment task. Regular and irregular plural forms also differed clearly with regard to their brain responses. Whereas overapplications of the -s plural rule produced a P600 component, overapplications of irregular patterns elicited an N400. In contrast to native speakers of German, however, the L2 learners did not show an anterior negativity for -s plural overapplications. Taken together, the results show clear dissociations between regular and irregular inflection for both morphological subsystems. We argue that the two processing routes posited by dual-mechanism models of inflection (lexical storage and morphological decomposition) are also employed by L2 learners.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (8): 1229–1244.
Published: 01 August 2005
Abstract
View article
PDF
Several event-related potential (ERP) studies in second language (L2) processing have revealed a differential vulnerability of syntax-related ERP effects in contrast to purely semantic ERP effects. However, it is still debated to what extent a potential critical period for L2 acquisition, as opposed to the attained proficiency level in the L2, contributes to the pattern of results reported in previous ERP studies. We studied L2 processing within the model of a miniature version of a natural language, namely Japanese, specifically constructed to assure high proficiency of the learners. In an auditory ERP experiment, we investigated sentence processing of the “Mini-Japanese” in Japanese native speakers and German volunteers before and after training. By making use of three different types of violation, namely, word category, case, and classifier violations, native and nonnative ERP patterns were compared. The three types of violation elicited three characteristic ERP patterns in Japanese native speakers. The word category violation elicited an anteriorly focused, broadly distributed early negativity followed by a P600, whereas the case violation evoked a P600 which was preceded by an N400. The classifier violation led solely to a late left distributed negativity with an anterior focus. Although the P600 was similar for Japanese natives and learners, the N400 and the anterior negativities were not present in the learner group. The differences across groups suggest deviant neural processes in on-line syntactic and thematic processing in the L2 learners despite high behavioral skills.