Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Kara M. Hawkins
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (7): 1194–1211.
Published: 01 July 2017
FIGURES
| View All (7)
Abstract
View article
PDF
Our brain's ability to flexibly control the communication between the eyes and the hand allows for our successful interaction with the objects located within our environment. This flexibility has been observed in the pattern of neural responses within key regions of the frontoparietal reach network. More specifically, our group has shown how single-unit and oscillatory activity within the dorsal premotor cortex (PMd) and the superior parietal lobule (SPL) change contingent on the level of visuomotor compatibility between the eyes and hand. Reaches that involve a coupling between the eyes and hand toward a common spatial target display a pattern of neural responses that differ from reaches that require eye–hand decoupling. Although previous work examined the altered spiking and oscillatory activity that occurs during different types of eye–hand compatibilities, they did not address how each of these measures of neurological activity interacts with one another. Thus, in an effort to fully characterize the relationship between oscillatory and single-unit activity during different types of eye–hand coordination, we measured the spike–field coherence (SFC) within regions of macaque SPL and PMd. We observed stronger SFC within PMdr and superficial regions of SPL (areas 5/PEc) during decoupled reaches, whereas PMdc and regions within SPL surrounding medial intrapareital sulcus had stronger SFC during coupled reaches. These results were supported by meta-analysis on human fMRI data. Our results support the proposal of altered cortical control during complex eye–hand coordination and highlight the necessity to account for the different eye–hand compatibilities in motor control research.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (3): 436–454.
Published: 01 March 2013
FIGURES
| View All (9)
Abstract
View article
PDF
Cognition allows for the use of different rule-based sensorimotor strategies, but the neural underpinnings of such strategies are poorly understood. The purpose of this study was to compare neural activity in the superior parietal lobule during a standard (direct interaction) reaching task, with two nonstandard (gaze and reach spatially incongruent) reaching tasks requiring the integration of rule-based information. Specifically, these nonstandard tasks involved dissociating the planes of reach and vision or rotating visual feedback by 180°. Single unit activity, gaze, and reach trajectories were recorded from two female Macaca mulattas. In all three conditions, we observed a temporal discharge pattern at the population level reflecting early reach planning and on-line reach monitoring. In the plane-dissociated task, we found a significant overall attenuation in the discharge rate of cells from deep recording sites, relative to standard reaching. We also found that cells modulated by reach direction tended to be significantly tuned either during the standard or the plane-dissociated task but rarely during both. In the standard versus feedback reversal comparison, we observed some cells that shifted their preferred direction by 180° between conditions, reflecting maintenance of directional tuning with respect to the reach goal. Our findings suggest that the superior parietal lobule plays an important role in processing information about the nonstandard nature of a task, which, through reciprocal connections with precentral motor areas, contributes to the accurate transformation of incongruent sensory inputs into an appropriate motor output. Such processing is crucial for the integration of rule-based information into a motor act.