Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-9 of 9
Katie L. McMahon
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Neural Correlates of Naturally Occurring Speech Errors during Picture Naming in Healthy Participants
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 35 (1): 111–127.
Published: 01 December 2022
FIGURES
| View All (5)
Abstract
View article
PDF
Most of our knowledge about the neuroanatomy of speech errors comes from lesion-symptom mapping studies in people with aphasia and laboratory paradigms designed to elicit primarily phonological errors in healthy adults, with comparatively little evidence from naturally occurring speech errors. In this study, we analyzed perfusion fMRI data from 24 healthy participants during a picture naming task, classifying their responses into correct and different speech error types (e.g., semantic, phonological, omission errors). Total speech errors engaged a wide set of left-lateralized frontal, parietal, and temporal regions that were almost identical to those involved during the production of correct responses. We observed significant perfusion signal decreases in the left posterior middle temporal gyrus and inferior parietal lobule (angular gyrus) for semantic errors compared to correct trials matched on various psycholinguistic variables. In addition, the left dorsal caudate nucleus showed a significant perfusion signal decrease for omission (i.e., anomic) errors compared with matched correct trials. Surprisingly, we did not observe any significant perfusion signal changes in brain regions proposed to be associated with monitoring mechanisms during speech production (e.g., ACC, superior temporal gyrus). Overall, our findings provide evidence for distinct neural correlates of semantic and omission error types, with anomic speech errors likely resulting from failures to initiate articulatory–motor processes rather than semantic knowledge impairments as often reported for people with aphasia.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (1): 129–145.
Published: 01 January 2021
FIGURES
| View All (6)
Abstract
View article
PDF
Comprehending action words often engages similar brain regions to those involved in perceiving and executing actions. This finding has been interpreted as support for grounding of conceptual processing in motor representations or that conceptual processing involves motor simulation. However, such demonstrations cannot confirm the nature of the mechanism(s) responsible, as word comprehension involves multiple processes (e.g., lexical, semantic, morphological, phonological). In this study, we tested whether this motor cortex engagement instead reflects processing of statistical regularities in sublexical phonological features. Specifically, we measured brain activity in healthy participants using functional magnetic resonance imaging while they performed an auditory lexical decision paradigm involving monosyllabic action words associated with specific effectors (face, arm, and leg). We show that nonwords matched to the action words in terms of their phonotactic probability elicit common patterns of activation. In addition, we show that a measure of the action words' phonological typicality , the extent to which a word's phonology is typical of other words in the grammatical category to which it belongs (i.e., more or less verb-like), is responsible for their activating a significant portion of primary and premotor cortices. These results indicate motor cortex engagement during action word comprehension is more likely to reflect processing of statistical regularities in sublexical phonological features than conceptual processing. We discuss the implications for current neurobiological models of language, all of which implicitly or explicitly assume that the relationship between the sound of a word and its meaning is arbitrary.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (12): 1946–1957.
Published: 01 December 2019
FIGURES
Abstract
View article
PDF
During conversation, speakers monitor their own and others' output so they can alter their production adaptively, including halting it if needed. We investigated the neural mechanisms of monitoring and halting in spoken word production by employing a modified stop signal task during fMRI. Healthy participants named target pictures and withheld their naming response when presented with infrequent auditory words as stop signals. We also investigated whether the speech comprehension system monitors inner (i.e., prearticulatory) speech via the output of phonological word form encoding as proposed by the perceptual loop theory [Levelt, W. J. M. Speaking: From intention to articulation . Cambridge, MA: MIT Press, 1989] by presenting stop signals phonologically similar to the target picture name (e.g., cabbage–CAMEL). The contrast of successful halting versus naming revealed extensive BOLD signal responses in bilateral inferior frontal gyrus, preSMA, and superior temporal gyrus. Successful versus unsuccessful halting of speech was associated with increased BOLD signal bilaterally in the posterior middle temporal, frontal, and parietal lobes and decreases bilaterally in the posterior and left anterior superior temporal gyrus and right inferior frontal gyrus. These results show, for the first time, the neural mechanisms engaged during both monitoring and interrupting speech production. However, we failed to observe any differential effects of phonological similarity in either the behavioral or neural data, indicating monitoring of inner versus external speech might involve different mechanisms.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (6): 913–921.
Published: 01 June 2019
FIGURES
| View All (5)
Abstract
View article
PDF
Studies of context effects in speech production have shown that semantic feature overlap produces interference in naming of categorically related objects. In neuroimaging studies, this semantic interference effect is consistently associated with involvement of left superior and middle temporal gyri. However, at least part of this effect has recently been shown to be attributable to visual form similarity, as categorically related objects typically share visual features. This fMRI study examined interference produced by visual form overlap in the absence of a category relation in a picture–word interference paradigm. Both visually similar and visually dissimilar distractors led to increased BOLD responses in the left inferior frontal gyrus compared with the congruent condition. Naming pictures in context with a distractor word denoting an object visually similar in form slowed RTs compared with unrelated words and was associated with reduced activity in the left posterior middle temporal gyrus. This area is reliably observed in lexical level processing during language production tasks. No significant differential activity was observed in areas typically engaged by early perceptual or conceptual feature level processing or in areas proposed to be engaged by postlexical language processes, suggesting that visual form interference does not arise from uncertainty or confusion during perceptual or conceptual identification or after lexical processing. We conclude that visual form interference has a lexical locus, consistent with the predictions of competitive lexical selection models.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (10): 1936–1947.
Published: 01 October 2015
FIGURES
Abstract
View article
PDF
The “distractor-frequency effect” refers to the finding that high-frequency (HF) distractor words slow picture naming less than low-frequency distractors in the picture–word interference paradigm. Rival input and output accounts of this effect have been proposed. The former attributes the effect to attentional selection mechanisms operating during distractor recognition, whereas the latter attributes it to monitoring/decision mechanisms operating on distractor and target responses in an articulatory buffer. Using high-density (128-channel) EEG, we tested hypotheses from these rival accounts. In addition to conducting stimulus- and response-locked whole-brain corrected analyses, we investigated the correct-related negativity, an ERP observed on correct trials at fronto-central electrodes proposed to reflect the involvement of domain general monitoring. The whole-brain ERP analysis revealed a significant effect of distractor frequency at inferior right frontal and temporal sites between 100 and 300-msec post-stimulus onset, during which lexical access is thought to occur. Response-locked, region of interest (ROI) analyses of fronto-central electrodes revealed a correct-related negativity starting 121 msec before and peaking 125 msec after vocal onset on the grand averages. Slope analysis of this component revealed a significant difference between HF and low-frequency distractor words, with the former associated with a steeper slope on the time window spanning from 100 msec before to 100 msec after vocal onset. The finding of ERP effects in time windows and components corresponding to both lexical processing and monitoring suggests the distractor frequency effect is most likely associated with more than one physiological mechanism.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (2): 482–495.
Published: 01 February 2012
FIGURES
Abstract
View article
PDF
In two fMRI experiments, participants named pictures with superimposed distractors that were high or low in frequency or varied in terms of age of acquisition. Pictures superimposed with low-frequency words were named more slowly than those superimposed with high-frequency words, and late-acquired words interfered with picture naming to a greater extent than early-acquired words. The distractor frequency effect (Experiment 1) was associated with increased activity in left premotor and posterior superior temporal cortices, consistent with the operation of an articulatory response buffer and verbal self-monitoring system. Conversely, the distractor age-of-acquisition effect (Experiment 2) was associated with increased activity in the left middle and posterior middle temporal cortex, consistent with the operation of lexical level processes such as lemma and phonological word form retrieval. The spatially dissociated patterns of activity across the two experiments indicate that distractor effects in picture–word interference may occur at lexical or postlexical levels of processing in speech production.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (12): 4164–4173.
Published: 01 December 2011
FIGURES
| View All (4)
Abstract
View article
PDF
In the present study, items pre-exposed in a familiarization series were included in a list discrimination task to manipulate memory strength. At test, participants were required to discriminate strong targets and strong lures from weak targets and new lures. This resulted in a concordant pattern of increased “old” responses to strong targets and lures. Model estimates attributed this pattern to either equivalent increases in memory strength across the two types of items (unequal variance signal detection model) or equivalent increases in both familiarity and recollection (dual process signal detection [DPSD] model). Hippocampal activity associated with strong targets and lures showed equivalent increases compared with missed items. This remained the case when analyses were restricted to high-confidence responses considered by the DPSD model to reflect predominantly recollection. A similar pattern of activity was observed in parahippocampal cortex for high-confidence responses. The present results are incompatible with “noncriterial” or “false” recollection being reflected solely in inflated DPSD familiarity estimates and support a positive correlation between hippocampal activity and memory strength irrespective of the accuracy of list discrimination, consistent with the unequal variance signal detection model account.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (9): 2324–2335.
Published: 01 September 2011
FIGURES
Abstract
View article
PDF
To investigate potentially dissociable recognition memory responses in the hippocampus and perirhinal cortex, fMRI studies have often used confidence ratings as an index of memory strength. Confidence ratings, although correlated with memory strength, also reflect sources of variability, including task-irrelevant item effects and differences both within and across individuals in terms of applying decision criteria to separate weak from strong memories. We presented words one, two, or four times at study in each of two different conditions, focused and divided attention, and then conducted separate fMRI analyses of correct old responses on the basis of subjective confidence ratings or estimates from single- versus dual-process recognition memory models. Overall, the effect of focussing attention on spaced repetitions at study manifested as enhanced recognition memory performance. Confidence- versus model-based analyses revealed disparate patterns of hippocampal and perirhinal cortex activity at both study and test and both within and across hemispheres. The failure to observe equivalent patterns of activity indicates that fMRI signals associated with subjective confidence ratings reflect additional sources of variability. The results are consistent with predictions of single-process models of recognition memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (8): 1571–1583.
Published: 01 August 2009
Abstract
View article
PDF
Previous behavioral studies reported a robust effect of increased naming latencies when objects to be named were blocked within semantic category, compared to items blocked between category. This semantic context effect has been attributed to various mechanisms including inhibition or excitation of lexico-semantic representations and incremental learning of associations between semantic features and names, and is hypothesized to increase demands on verbal self-monitoring during speech production. Objects within categories also share many visual structural features, introducing a potential confound when interpreting the level at which the context effect might occur. Consistent with previous findings, we report a significant increase in response latencies when naming categorically related objects within blocks, an effect associated with increased perfusion fMRI signal bilaterally in the hippocampus and in the left middle to posterior superior temporal cortex. No perfusion changes were observed in the middle section of the left middle temporal cortex, a region associated with retrieval of lexical–semantic information in previous object naming studies. Although a manipulation of visual feature similarity did not influence naming latencies, we observed perfusion increases in the perirhinal cortex for naming objects with similar visual features that interacted with the semantic context in which objects were named. These results provide support for the view that the semantic context effect in object naming occurs due to an incremental learning mechanism, and involves increased demands on verbal self-monitoring.