Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Kelly S. Giovanello
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (1): 159–170.
Published: 01 January 2012
FIGURES
Abstract
View article
PDF
Neuroimaging studies of episodic memory in young adults demonstrate greater functional neural activity in ventrolateral pFC and hippocampus during retrieval of relational information as compared with item information. We tested the hypothesis that healthy older adults—individuals who exhibit behavioral declines in relational memory—would show reduced specificity of ventrolateral prefrontal and hippocampal regions during relational retrieval. At study, participants viewed two nouns and were instructed to covertly generate a sentence that related the words. At retrieval, fMRIs were acquired during item and relational memory tasks. In the relational task, participants indicated whether the two words were previously seen together. In the item task, participants indicated whether both items of a pair were previously seen. In young adults, left posterior ventrolateral pFC and bilateral hippocampal activity was modulated by the extent to which the retrieval task elicited relational processing. In older adults, activity in these regions was equivalent for item and relational memory conditions, suggesting a reduction in ventrolateral pFC and hippocampal specificity with normal aging.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (11): 3637–3656.
Published: 01 November 2011
FIGURES
| View All (4)
Abstract
View article
PDF
Numerous studies have documented that older adults (OAs) do not perform as well as young adults (YAs) when task demands require the establishment or retrieval of a novel link between previously unrelated information (relational memory: RM). Nonetheless, the source of this age-related RM deficit remains unspecified. One of the most widely investigated factors is an age-related reduction in attentional resources. To investigate this factor, previous researchers have tested whether dividing YAs' attention during encoding equated their RM performance to that of OAs. However, results from these studies failed to replicate the age-related RM impairment observed in aging. The current study investigated whether a reduction in attentional resources for processing of relational information (i.e., relational attention) underlies age-related RM deficits. Using fMRI, we examined whether the effect of reduced attentional resources for processing of relational information is similar to that observed in aging at both behavioral and neural levels. The behavioral results showed that reduced attentional resources for relational information during encoding equated YAs RM performance to that of OAs. Furthermore, the fMRI results demonstrated that both aging, as well as reductions in relational attention in YAs, significantly reduced activity in brain areas associated with successful RM formation, namely, the ventrolateral and dorsolateral PFC, superior and inferior parietal regions, and left hippocampus. Such converging evidence from behavioral and neuroimaging studies suggests that a reduction in attentional resources for relational information is a critical factor for the RM deficit observed in aging.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (7): 1348–1361.
Published: 01 July 2010
FIGURES
| View All (4)
Abstract
View article
PDF
Human behavioral studies demonstrate that healthy aging is often accompanied by increases in memory distortions or errors. Here we used event-related fMRI to examine the neural basis of age-related memory distortions. We used the memory conjunction error paradigm, a laboratory procedure known to elicit high levels of memory errors. For older adults, right parahippocampal gyrus showed significantly greater activity during false than during accurate retrieval. We observed no regions in which activity was greater during false than during accurate retrieval for young adults. Young adults, however, showed significantly greater activity than old adults during accurate retrieval in right hippocampus. By contrast, older adults demonstrated greater activity than young adults during accurate retrieval in right inferior and middle prefrontal cortex. These data are consistent with the notion that age-related memory conjunction errors arise from dysfunction of hippocampal system mechanisms, rather than impairments in frontally mediated monitoring processes.