Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Kenji Ogawa
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (1): 171–182.
Published: 01 January 2012
FIGURES
| View All (10)
Abstract
View articletitled, Reference Frame of Human Medial Intraparietal Cortex in Visually Guided Movements
View
PDF
for article titled, Reference Frame of Human Medial Intraparietal Cortex in Visually Guided Movements
Visually guided reaching involves the transformation of a spatial position of a target into a body-centered reference frame. Although involvement of the posterior parietal cortex (PPC) has been proposed in this visuomotor transformation, it is unclear whether human PPC uses visual or body-centered coordinates in visually guided movements. We used a delayed visually guided reaching task, together with an fMRI multivoxel pattern analysis, to reveal the reference frame used in the human PPC. In experiments, a target was first presented either to the left or to the right of a fixation point. After a delay period, subjects moved a cursor to the position where the target had previously been displayed using either a normal or a left–right reversed mouse. The activation patterns of normal sessions were first used to train the classifier to predict movement directions. The activity patterns of the reversed sessions were then used as inputs to the decoder to test whether predicted directions correspond to actual movement directions in either visual or body-centered coordinates. When the target was presented before actual movement, the predicted direction in the medial intraparietal cortex was congruent with the actual movement in the body-centered coordinates, although the averaged signal intensities were not significantly different between two movement directions. Our results indicate that the human medial intraparietal cortex uses body-centered coordinates to encode target position or movement directions, which are crucial for visually guided movements.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (11): 1827–1835.
Published: 01 November 2007
Abstract
View articletitled, Lateralization of the Posterior Parietal Cortex for Internal Monitoring of Self- versus Externally Generated Movements
View
PDF
for article titled, Lateralization of the Posterior Parietal Cortex for Internal Monitoring of Self- versus Externally Generated Movements
Internal monitoring or state estimation of movements is essential for human motor control to compensate for inherent delays and noise in sensorimotor loops. Two types of internal estimation of movements exist: self-generated movements, and externally generated movements. We used functional magnetic resonance imaging to investigate differences in brain activity for internal monitoring of self- versus externally generated movements during visual occlusion. Participants tracked a sinusoidally moving target with a mouse cursor. On some trials, vision of either target (externally generated) or cursor (self-generated) movement was transiently occluded, during which subjects continued tracking by estimating current position of either the invisible target or cursor on screen. Analysis revealed that both occlusion conditions were associated with increased activity in the presupplementary motor area and decreased activity in the right lateral occipital cortex compared to a control condition with no occlusion. Moreover, the right and left posterior parietal cortex (PPC) showed greater activation during occlusion of target and cursor movements, respectively. This study suggests lateralization of the PPC for internal monitoring of internally versus externally generated movements, fully consistent with previously reported clinical findings.