Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Kenneth F. Valyear
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (7): 1493–1503.
Published: 01 July 2010
FIGURES
Abstract
View article
PDF
When exposed to novel dynamical conditions (e.g., externally imposed forces), neurologically intact subjects easily adjust motor commands on the basis of their own reaching errors. Subjects can also benefit from visual observation of others' kinematic errors. Here, using fMRI, we scanned subjects watching movies depicting another person learning to reach in a novel dynamic environment created by a robotic device. Passive observation of reaching movements (whether or not they were perturbed by the robot) was associated with increased activation in fronto-parietal regions that are normally recruited in active reaching. We found significant clusters in parieto-occipital cortex, intraparietal sulcus, as well as in dorsal premotor cortex. Moreover, it appeared that part of the network that has been shown to be engaged in processing self-generated reach error is also involved in observing reach errors committed by others. Specifically, activity in left intraparietal sulcus and left dorsal premotor cortex, as well as in right cerebellar cortex, was modulated by the amplitude of observed kinematic errors.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (5): 970–984.
Published: 01 May 2010
FIGURES
| View All (6)
Abstract
View article
PDF
In one popular account of the human visual system, two streams are distinguished, a ventral stream specialized for perception and a dorsal stream specialized for action. The skillful use of familiar tools, however, is likely to involve the cooperation of both streams. Using functional magnetic resonance imaging, we scanned individuals while they viewed short movies of familiar tools being grasped in ways that were either consistent or inconsistent with how tools are typically grasped during use. Typical-for-use actions were predicted to preferentially activate parietal areas important for tool use. Instead, our results revealed several areas within the ventral stream, as well as the left posterior middle temporal gyrus, as preferentially active for our typical-for-use actions. We believe these findings reflect sensitivity to learned semantic associations and suggest a special role for these areas in representing object-specific actions. We hypothesize that during actual tool use a complex interplay between the two streams must take place, with ventral stream areas providing critical input as to how an object should be engaged in accordance with stored semantic knowledge.