Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Klaus Obermayer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (11): 1879–1897.
Published: 01 November 2023
FIGURES
| View All (6)
Abstract
View article
PDF
Humans effortlessly make quick and accurate perceptual decisions about the nature of their immediate visual environment, such as the category of the scene they face. Previous research has revealed a rich set of cortical representations potentially underlying this feat. However, it remains unknown which of these representations are suitably formatted for decision-making. Here, we approached this question empirically and computationally, using neuroimaging and computational modeling. For the empirical part, we collected EEG data and RTs from human participants during a scene categorization task (natural vs. man-made). We then related EEG data to behavior to behavior using a multivariate extension of signal detection theory. We observed a correlation between neural data and behavior specifically between ∼100 msec and ∼200 msec after stimulus onset, suggesting that the neural scene representations in this time period are suitably formatted for decision-making. For the computational part, we evaluated a recurrent convolutional neural network (RCNN) as a model of brain and behavior. Unifying our previous observations in an image-computable model, the RCNN predicted well the neural representations, the behavioral scene categorization data, as well as the relationship between them. Our results identify and computationally characterize the neural and behavioral correlates of scene categorization in humans.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (4): 787–797.
Published: 01 April 2015
FIGURES
| View All (6)
Abstract
View article
PDF
Perceptual learning is the improvement in perceptual performance through training or exposure. Here, we used fMRI before and after extensive behavioral training to investigate the effects of perceptual learning on the recognition of objects under challenging viewing conditions. Objects belonged either to trained or untrained categories. Trained categories were further subdivided into trained and untrained exemplars and were coupled with high or low monetary rewards during training. After a 3-day training, object recognition was markedly improved. Although there was a considerable transfer of learning to untrained exemplars within categories, an enhancing effect of reward reinforcement was specific to trained exemplars. fMRI showed that hippocampus responses to both trained and untrained exemplars of trained categories were enhanced by perceptual learning and correlated with the effect of reward reinforcement. Our results suggest a key role of hippocampus in object recognition after perceptual learning.