Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Kwang-Hyuk Lee
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (5): 1100–1112.
Published: 01 May 2011
FIGURES
| View All (4)
Abstract
View articletitled, The Role of the Cerebellum in Sub- and Supraliminal Error Correction during Sensorimotor Synchronization: Evidence from fMRI and TMS
View
PDF
for article titled, The Role of the Cerebellum in Sub- and Supraliminal Error Correction during Sensorimotor Synchronization: Evidence from fMRI and TMS
Our ability to interact physically with objects in the external world critically depends on temporal coupling between perception and movement (sensorimotor timing) and swift behavioral adjustment to changes in the environment (error correction). In this study, we investigated the neural correlates of the correction of subliminal and supraliminal phase shifts during a sensorimotor synchronization task. In particular, we focused on the role of the cerebellum because this structure has been shown to play a role in both motor timing and error correction. Experiment 1 used fMRI to show that the right cerebellar dentate nucleus and primary motor and sensory cortices were activated during regular timing and during the correction of subliminal errors. The correction of supraliminal phase shifts led to additional activations in the left cerebellum and right inferior parietal and frontal areas. Furthermore, a psychophysiological interaction analysis revealed that supraliminal error correction was associated with enhanced connectivity of the left cerebellum with frontal, auditory, and sensory cortices and with the right cerebellum. Experiment 2 showed that suppression of the left but not the right cerebellum with theta burst TMS significantly affected supraliminal error correction. These findings provide evidence that the left lateral cerebellum is essential for supraliminal error correction during sensorimotor synchronization.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (1): 147–157.
Published: 01 January 2007
Abstract
View articletitled, The Role of the Cerebellum in Subsecond Time Perception: Evidence from Repetitive Transcranial Magnetic Stimulation
View
PDF
for article titled, The Role of the Cerebellum in Subsecond Time Perception: Evidence from Repetitive Transcranial Magnetic Stimulation
In three experiments, we investigated the role of the cerebellum in sub- and suprasecond time perception by using repetitive transcranial magnetic stimulation (rTMS). In Experiment 1, subjects underwent four 8-min 1-Hz rTMS sessions in a within-subject design. rTMS sites were the medial cerebellum (real and sham rTMS), left lateral cerebellum, and right lateral cerebellum. Following each rTMS session, subjects completed a subsecond temporal bisection task (stimuli in the range 400–800 msec). Compared with sham rTMS, rTMS applied over the right lateral or medial cerebellum induced a leftward shift of the psychophysical function (perceived lengthening of time). In Experiment 2, a separate sample of subjects underwent the identical rTMS procedure and completed a suprasecond bisection task (stimuli in the 1000–2000 msec range). In this experiment, rTMS to the cerebellar sites did not produce any significant changes compared with sham rTMS. Experiment 3 employed a within-subject design to replicate findings from Experiments 1 and 2. Subjects underwent four rTMS conditions (sub- and suprabisection tasks following medial cerebellar and sham rTMS). rTMS induced a significant leftward shift of psychophysical function in the subsecond bisection, but not in the suprasecond bisection. In this study, we have demonstrated that transient cerebellar stimulation can differently affect the ability to estimate time intervals below and above a duration of 1 sec. The results of this study provide direct evidence for the role of the cerebellum in processing subsecond time intervals. This study further suggests that the perception of sub- and suprasecond intervals is likely to depend upon distinct neural systems.