Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Laura Batterink
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Syllables in Sync Form a Link: Neural Phase-locking Reflects Word Knowledge during Language Learning
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (9): 1735–1748.
Published: 01 September 2020
FIGURES
| View All (5)
Abstract
View article
PDF
Language is composed of small building blocks, which combine to form larger meaningful structures. To understand language, we must process, track, and concatenate these building blocks into larger linguistic units as speech unfolds over time. An influential idea is that phase-locking of neural oscillations across different levels of linguistic structure provides a mechanism for this process. Building on this framework, the goal of the current study was to determine whether neural phase-locking occurs more robustly to novel linguistic items that are successfully learned and encoded into memory, compared to items that are not learned. Participants listened to a continuous speech stream composed of repeating nonsense words while their EEG was recorded and then performed a recognition test on the component words. Neural phase-locking to individual words during the learning period strongly predicted the strength of subsequent word knowledge, suggesting that neural phase-locking indexes the subjective perception of specific linguistic items during real-time language learning. These findings support neural oscillatory models of language, demonstrating that words that are successfully perceived as functional units are tracked by oscillatory activity at the matching word rate. In contrast, words that are not learned are processed merely as a sequence of unrelated syllables and thus not tracked by corresponding word-rate oscillations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (9): 2005–2020.
Published: 01 September 2014
FIGURES
| View All (4)
Abstract
View article
PDF
Millions of adults worldwide are faced with the task of learning a second language (L2). Understanding the neural mechanisms that support this learning process is an important area of scientific inquiry. However, most previous studies on the neural mechanisms underlying L2 acquisition have focused on characterizing the results of learning, relying upon end-state outcome measures in which learning is assessed after it has occurred, rather than on the learning process itself. In this study, we adopted a novel and more direct approach to investigate neural mechanisms engaged during L2 learning, in which we recorded ERPs from beginning adult learners as they were exposed to an unfamiliar L2 for the first time. Learners' proficiency in the L2 was then assessed behaviorally using a grammaticality judgment task, and ERP data acquired during initial L2 exposure were sorted as a function of performance on this task. High-proficiency learners showed a larger N100 effect to open-class content words compared with closed-class function words, whereas low-proficiency learners did not show a significant N100 difference between open- and closed-class words. In contrast, amplitude of the N400 word category effect correlated with learners' L2 comprehension, rather than predicting syntactic learning. Taken together, these results indicate that learners who spontaneously direct greater attention to open- rather than closed-class words when processing L2 input show better syntactic learning, suggesting a link between selective attention to open-class content words and acquisition of basic morphosyntactic rules. These findings highlight the importance of selective attention mechanisms for L2 acquisition.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (6): 936–951.
Published: 01 June 2013
FIGURES
| View All (5)
Abstract
View article
PDF
In contrast to native language acquisition, adult second-language (L2) acquisition occurs under highly variable learning conditions. Although most adults acquire their L2 at least partially through explicit instruction, as in a classroom setting, many others acquire their L2 primarily through implicit exposure, as is typical of an immersion environment. Whether these differences in acquisition environment play a role in determining the neural mechanisms that are ultimately recruited to process L2 grammar has not been well characterized. This study investigated this issue by comparing the ERP response to novel L2 syntactic rules acquired under conditions of implicit exposure and explicit instruction, using a novel laboratory language-learning paradigm. Native speakers tested on these stimuli showed a biphasic response to syntactic violations, consisting of an earlier negativity followed by a later P600 effect. After merely an hour of training, both implicitly and explicitly trained learners who were capable of detecting grammatical violations also elicited P600 effects. In contrast, learners who were unable to discriminate between grammatically correct and incorrect sentences did not show significant P600 effects. The magnitude of the P600 effect was found to correlate with learners' behavioral proficiency. Behavioral measures revealed that successful learners from both the implicit and explicit groups gained explicit, verbalizable knowledge about the L2 grammar rules. Taken together, these results indicate that late, controlled mechanisms indexed by the P600 play a crucial role in processing a late-learned L2 grammar, regardless of training condition. These findings underscore the remarkable plasticity of later, attention-dependent processes and their importance in lifelong learning.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (11): 3181–3196.
Published: 01 November 2011
FIGURES
| View All (6)
Abstract
View article
PDF
The vast majority of word meanings are learned simply by extracting them from context rather than by rote memorization or explicit instruction. Although this skill is remarkable, little is known about the brain mechanisms involved. In the present study, ERPs were recorded as participants read stories in which pseudowords were presented multiple times, embedded in consistent, meaningful contexts (referred to as meaning condition, M+) or inconsistent, meaningless contexts (M−). Word learning was then assessed implicitly using a lexical decision task and explicitly through recall and recognition tasks. Overall, during story reading, M− words elicited a larger N400 than M+ words, suggesting that participants were better able to semantically integrate M+ words than M− words throughout the story. In addition, M+ words whose meanings were subsequently correctly recognized and recalled elicited a more positive ERP in a later time window compared with M+ words whose meanings were incorrectly remembered, consistent with the idea that the late positive component is an index of encoding processes. In the lexical decision task, no behavioral or electrophysiological evidence for implicit priming was found for M+ words. In contrast, during the explicit recognition task, M+ words showed a robust N400 effect. The N400 effect was dependent upon recognition performance, such that only correctly recognized M+ words elicited an N400. This pattern of results provides evidence that the explicit representations of word meanings can develop rapidly, whereas implicit representations may require more extensive exposure or more time to emerge.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (11): 2514–2529.
Published: 01 November 2010
FIGURES
| View All (10)
Abstract
View article
PDF
An important question in the study of language is to what degree semantic and syntactic processes are automatic or controlled. This study employed an attentional blink (AB) paradigm to manipulate awareness in the processing of target words in order to assess automaticity in semantic and syntactic processing. In the semantic block, targets occurring both within and outside the AB period elicited an N400. However, N400 amplitude was significantly reduced during the AB period, and missed targets did not elicit an N400. In the syntactic block, ERPs to targets occurring outside the AB period revealed a late negative syntactic incongruency effect, whereas ERPs to targets occurring within the AB period showed no effect of incongruency. The semantic results support the argument that the N400 primarily indexes a controlled, postlexical process. Syntactic findings suggest that the ERP response to some syntactic violations depends on awareness and availability of attentional resources.