Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Leila Reddy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (6): 852–868.
Published: 01 June 2016
FIGURES
| View All (10)
Abstract
View articletitled, Multivoxel Object Representations in Adult Human Visual Cortex Are Flexible: An Associative Learning Study
View
PDF
for article titled, Multivoxel Object Representations in Adult Human Visual Cortex Are Flexible: An Associative Learning Study
Learning associations between co-occurring events enables us to extract structure from our environment. Medial-temporal lobe structures are critical for associative learning. However, the role of the ventral visual pathway (VVP) in associative learning is not clear. Do multivoxel object representations in the VVP reflect newly formed associations? We show that VVP multivoxel representations become more similar to each other after human participants learn arbitrary new associations between pairs of unrelated objects (faces, houses, cars, chairs). Participants were scanned before and after 15 days of associative learning. To evaluate how object representations changed, a classifier was trained on discriminating two nonassociated categories (e.g., faces/houses) and tested on discriminating their paired associates (e.g., cars/chairs). Because the associations were arbitrary and counterbalanced across participants, there was initially no particular reason for this cross-classification decision to tend toward either alternative. Nonetheless, after learning, cross-classification performance increased in the VVP (but not hippocampus), on average by 3.3%, with some voxels showing increases of up to 10%. For example, a chair multivoxel representation that initially resembled neither face nor house representations was, after learning, classified as more similar to that of faces for participants who associated chairs with faces and to that of houses for participants who associated chairs with houses. Additionally, learning produced long-lasting perceptual consequences. In a behavioral priming experiment performed several months later, the change in cross-classification performance was correlated with the degree of priming. Thus, VVP multivoxel representations are not static but become more similar to each other after associative learning.
Journal Articles
Local Field Potentials and Spikes in the Human Medial Temporal Lobe are Selective to Image Category
FreePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (3): 479–492.
Published: 01 March 2007
Abstract
View articletitled, Local Field Potentials and Spikes in the Human Medial Temporal Lobe are Selective to Image Category
View
PDF
for article titled, Local Field Potentials and Spikes in the Human Medial Temporal Lobe are Selective to Image Category
Local field potentials (LFPs) reflect the averaged dendrosomatic activity of synaptic signals of large neuronal populations. In this study, we investigate the selectivity of LFPs and single neuron activity to semantic categories of visual stimuli in the medial temporal lobe of nine neurosurgical patients implanted with intracranial depth electrodes for clinical reasons. Strong selectivity to the category of presented images was found for the amplitude of LFPs in 8% of implanted microelectrodes and for the firing rates of single and multiunits in 14% of microelectrodes. There was little overlap between the LFP- and spike-selective microelectrodes. Separate analysis of the power and phase of LFPs revealed that the mean phase was category-selective around the θ frequency range and that the power of the LFPs was category-selective for high frequencies around the γ rhythm. Of the 36 microelectrodes with amplitude-selective LFPs, 30 were found in the hippocampus. Finally, it was possible to readout information about the category of stimuli presented to the patients with both spikes and LFPs. Combining spiking and LFP activity enhanced the decoding accuracy in comparison with the accuracy obtained with each signal alone, especially for short time intervals.