Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Leonardo G. Cohen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (8): 1503–1512.
Published: 01 August 2015
FIGURES
| View All (4)
Abstract
View article
PDF
Sequence learning relies on formation of unconscious transitional and conscious ordinal memories. The influence of practice type on formation of these memories that compose skill and systems level neural substrates is not known. Here, we studied learning of transitional and ordinal memories in participants trained on motor sequences while scanned using fMRI. Practice structure was varied or grouped (mixing or grouping sequences during training, respectively). Memory was assessed 30 min and 1 week later. Varied practice improved transitional memory and enhanced coupling of the dorsal premotor cortex with thalamus, cerebellum, and lingual and cingulate regions and greater transitional memory correlated with this coupling. Thus, varied practice improves unconscious transitional memories in proportion to coupling within a cortico-subcortical network linked to premotor cortex. This result indicates that practice structure influences unconscious transitional memory formation and identifies underlying systems level mechanisms.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (2): 204–213.
Published: 01 February 2007
Abstract
View article
PDF
Interhemispheric inhibition (IHI) between motor cortical areas is thought to play a critical role in motor control and could influence manual dexterity. The purpose of this study was to investigate IHI preceding movements of the dominant and nondominant hands of healthy volunteers. Movement-related IHI was studied by means of a double-pulse transcranial magnetic stimulation protocol in right-handed individuals in a simple reaction time paradigm. IHI targeting the motor cortex contralateral (IHI c ) and ipsilateral (IHI i ) to each moving finger was determined. IHI c was comparable after the go signal, a long time preceding movement onset, in both hands. Closer to movement onset, IHI c reversed into facilitation for the right dominant hand but remained inhibitory for left nondominant hand movements. IHI i displayed a nearly constant inhibition with a trough early in the premovement period in both hands. In conclusion, our results unveil a more important modulation of interhemispheric interactions during generation of dominant than nondominant hand movements. This modulation essentially consisted of a shift from a balanced IHI at rest to an IHI predominantly directed toward the ipsilateral primary motor cortex at movement onset. Such a mechanism might release muscles from inhibition in the contralateral primary motor cortex while preventing the occurrence of the mirror activity in ipsilateral primary motor cortex and could therefore contribute to intermanual differences in dexterity.