Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Lynn Hasher
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (10): 1946–1962.
Published: 01 October 2020
FIGURES
| View All (8)
Abstract
View article
PDF
Goal-relevant information can be maintained in working memory over a brief delay interval to guide an upcoming decision. There is also evidence suggesting the existence of a complementary process: namely, the ability to suppress information that is no longer relevant to ongoing task goals. Moreover, this ability to suppress or inhibit irrelevant information appears to decline with age. In this study, we compared younger and older adults undergoing fMRI on a working memory task designed to address whether the modulation of neural representations of relevant and no-longer-relevant items during a delay interval is related to age and overall task performance. Following from the theoretical predictions of the inhibitory deficit hypothesis of aging, we hypothesized that older adults would show higher activation of no-longer-relevant items during a retention delay compared to young adults and that higher activation of these no-longer-relevant items would predict worse recognition memory accuracy for relevant items. Our results support this prediction and more generally demonstrate the importance of goal-driven modulation of neural activity in successful working memory maintenance. Furthermore, we showed that the largest age differences in the regulation of category-specific pattern activity during working memory maintenance were seen throughout the medial temporal lobe and prominently in the hippocampus, further establishing the importance of “long-term memory” retrieval mechanisms in the context of high-load working memory tasks that place large demands on attentional selection mechanisms.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (3): 560–572.
Published: 01 March 2017
FIGURES
| View All (4)
Abstract
View article
PDF
Testing older adults in the morning generally improves behavioral performance relative to afternoon testing. Morning testing is also associated with brain activity similar to that of young adults. Here, we used graph theory to explore how time of day (TOD) affects the organization of brain networks in older adults across rest and task states. We used nodes from the automated anatomical labeling atlas to construct participant-specific correlation matrices of fMRI data obtained during 1-back tasks with interference and rest. We computed pairwise group differences for key graph metrics, including small-worldness and modularity. We found that older adults tested in the morning and young adults did not differ on any graph metric. Both of these groups differed from older adults tested in the afternoon during the tasks—but not rest. Specifically, the latter group had lower modularity and small-worldness (indices of more efficient network organization). Across all groups, higher modularity and small-worldness strongly correlated with reduced distractibility on an implicit priming task. Increasingly, TOD is seen as important for interpreting and reproducing neuroimaging results. Our study emphasizes how TOD affects brain network organization and executive control in older adults.