Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
M. Gareth Gaskell
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (12): 2179–2188.
Published: 01 December 2013
FIGURES
Abstract
View article
PDF
Several accounts of speech perception propose that the areas involved in producing language are also involved in perceiving it. In line with this view, neuroimaging studies show activation of premotor cortex (PMC) during phoneme judgment tasks; however, there is debate about whether speech perception necessarily involves motor processes, across all task contexts, or whether the contribution of PMC is restricted to tasks requiring explicit phoneme awareness. Some aspects of speech processing, such as mapping sounds onto meaning, may proceed without the involvement of motor speech areas if PMC specifically contributes to the manipulation and categorical perception of phonemes. We applied TMS to three sites—PMC, posterior superior temporal gyrus, and occipital pole—and for the first time within the TMS literature, directly contrasted two speech perception tasks that required explicit phoneme decisions and mapping of speech sounds onto semantic categories, respectively. TMS to PMC disrupted explicit phonological judgments but not access to meaning for the same speech stimuli. TMS to two further sites confirmed that this pattern was site specific and did not reflect a generic difference in the susceptibility of our experimental tasks to TMS: stimulation of pSTG, a site involved in auditory processing, disrupted performance in both language tasks, whereas stimulation of occipital pole had no effect on performance in either task. These findings demonstrate that, although PMC is important for explicit phonological judgments, crucially, PMC is not necessary for mapping speech onto meanings.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (4): 803–820.
Published: 01 April 2009
Abstract
View article
PDF
Two experiments explored the neural mechanisms underlying the learning and consolidation of novel spoken words. In Experiment 1, participants learned two sets of novel words on successive days. A subsequent recognition test revealed high levels of familiarity for both sets. However, a lexical decision task showed that only novel words learned on the previous day engaged in lexical competition with similar-sounding existing words. Additionally, only novel words learned on the previous day exhibited faster repetition latencies relative to unfamiliar controls. This overnight consolidation effect was further examined using fMRI to compare neural responses to existing and novel words learned on different days prior to scanning (Experiment 2). This revealed an elevated response for novel compared with existing words in left superior temporal gyrus (STG), inferior frontal and premotor regions, and right cerebellum. Cortical activation was of equivalent magnitude for unfamiliar novel words and items learned on the day of scanning but significantly reduced for novel words learned on the previous day. In contrast, hippocampal responses were elevated for novel words that were entirely unfamiliar, and this elevated response correlated with postscanning behavioral measures of word learning. These findings are consistent with a dual-learning system account in which there is a division of labor between medial-temporal systems that are involved in initial acquisition and neocortical systems in which representations of novel spoken words are subject to overnight consolidation.