Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Magdalena Chechlacz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (6): 851–866.
Published: 01 June 2018
FIGURES
| View All (4)
Abstract
View article
PDF
Visual attention allows the allocation of limited neural processing resources to stimuli based on their behavioral priorities. The selection of task-relevant visual targets entails the processing of multiple competing stimuli and the suppression of distractors that may be either perceptually salient or perceptually similar to targets. The posterior parietal cortex controls the interaction between top–down (task-driven) and bottom–up (stimulus-driven) processes competing for attentional selection, as well as spatial distribution of attention. Here, we examined whether biparietal transcranial direct current stimulation (tDCS) would modulate the interaction between top–down and bottom–up processes in visual attention. Visual attention function was assessed with a visual discrimination task, in which a lateralized target was presented alone or together with a contralateral, similar or salient, distractor. The accuracy and RTs were measured before and during three stimulation sessions (sham, right anodal/left cathodal, left anodal/right cathodal). The analyses demonstrated (i) polarity-dependent effects of tDCS on the accuracy of target discrimination, but only when the target was presented with a similar distractor; (ii) the tDCS-triggered effects on the accuracy of discriminating targets, accompanied by a similar distractor, varied according to the target location; and (iii) overall detrimental effects of tDCS on RTs were observed, regardless of target location, distractor type, and polarity of the stimulation. We conclude that the observed polarity, distractor type, and target location-dependent effects of biparietal tDCS on the accuracy of target detection resulted from both a modulation of the interaction between top–down and bottom–up attentional processes and the interhemispheric competition mechanisms guiding attentional selection and spatial deployment of attention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (9): 1854–1869.
Published: 01 September 2015
FIGURES
| View All (5)
Abstract
View article
PDF
The ability to search efficiently for visual targets among distractors can break down after a variety of brain lesions, but the specific processes affected by the lesions are unclear. We examined search over space (conjunction search) and over time plus space (preview search) in a consecutive series of patients with acquired brain lesions. We also assessed performance on standard neuropsychological measures of visuospatial short-term memory (Corsi Block), sustained attention and memory updating (the contrast between forward and backward digit span), and visual neglect. Voxel-based morphometry analyses revealed regions in the occipital (middle occipital gyrus), posterior parietal (angular gyrus), and temporal cortices (superior and middle temporal gyri extending to the insula), along with underlying white matter pathways, associated with poor search. Going beyond standard voxel-based morphometry analyses, we then report correlation measures of structural damage in these regions and the independent neuropsychological measures of other cognitive functions. We find distinct patterns of correlation in areas linked to poor search, suggesting that the areas play functionally different roles in search. We conclude that neuropsychological disorders of search can be linked to necessary and distinct cognitive functions, according to the site of lesion.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (12): 2701–2715.
Published: 01 December 2014
FIGURES
| View All (6)
Abstract
View article
PDF
Deficits in the ability to draw objects, despite apparently intact perception and motor abilities, are defined as constructional apraxia. Constructional deficits, often diagnosed based on performance on copying complex figures, have been reported in a range of pathologies, perhaps reflecting the contribution of several underlying factors to poor figure drawing. The current study provides a comprehensive analysis of brain–behavior relationships in drawing disorders based on data from a large cohort of subacute stroke patients ( n = 358) using whole-brain voxel-wise statistical analyses linked to behavioral measures from a complex figure copy task. We found that (i) overall poor performance on figure copying was associated with subcortical lesions (BG and thalamus), (ii) lateralized deficits with respect to the midline of the viewer were associated with lesions within the posterior parietal lobule, and (iii) spatial positioning errors across the entire figure were associated with lesions within visual processing areas (lingual gyrus and calcarine) and the insula. Furthermore, deficits in reproducing global aspects of form were associated with damage to the right middle temporal gyrus, whereas deficits in representing local features were linked to the left hemisphere lesions within calcarine cortex (extending into the cuneus and precuneus), the insula, and the TPJ. The current study provides strong evidence that impairments in separate cognitive mechanisms (e.g., spatial coding, attention, motor execution, and planning) linked to different brain lesions contribute to poor performance on complex figure copying tasks. The data support the argument that drawing depends on several cognitive processes operating via discrete neuronal networks and that constructional problems as well as hierarchical and spatial representation deficits contribute to poor figure copying.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (3): 718–735.
Published: 01 March 2012
FIGURES
| View All (5)
Abstract
View article
PDF
Because of our limited processing capacity, different elements of the visual scene compete for the allocation of processing resources. One of the most striking deficits in visual selection is simultanagnosia, a rare neuropsychological condition characterized by impaired spatial awareness of more than one object at time. To decompose the neuroanatomical substrates of the syndrome and to gain insights into the structural and functional organization of visuospatial attention, we performed a systematic evaluation of lesion patterns in a group of simultanagnosic patients compared with patients with either (i) unilateral visuospatial deficits (neglect and/or extinction) or (ii) bilateral posterior lesions without visuospatial deficits, using overlap/subtraction analyses, estimation of lesion volume, and a lesion laterality index. We next used voxel-based morphometry to assess the link between different visuospatial deficits and gray matter and white matter (WM) damage. Lesion overlap/subtraction analyses, lesion laterality index, and voxel-based morphometry measures converged to indicate that bilateral parieto-occipital WM disconnections are both distinctive and necessary to create symptoms associated with simultanagnosia. We also found that bilateral gray matter damage within the middle frontal area (BA 46), cuneus, calacarine, and parieto-occipital fissure as well as right hemisphere parietal lesions within intraparietal and postcentral gyri were associated with simultanagnosia. Further analysis of the WM based on tractography revealed associations with bilateral damage to major pathways within the visuospatial attention network, including the superior longitudinal fasciculus, the inferior fronto-occipital fasciculus, and the inferior longitudinal fasciculus. We conclude that damage to the parieto-occipital regions and the intraparietal sulcus, together, with bilateral WM disconnections within the visuosptial attention network, contribute to poor visual processing of multiple objects and the loss of processing speed characteristic of simultanagnosia.