Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Malte Wöstmann
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (2): 212–225.
Published: 01 February 2020
FIGURES
| View All (5)
Abstract
View article
PDF
In challenging listening conditions, closing the eyes is a strategy with intuitive appeal to improve auditory attention and perception. On the neural level, closing the eyes increases the power of alpha oscillations (∼10 Hz), which are a prime signature of auditory attention. Here, we test whether eye closure benefits neural and behavioral signatures of auditory attention and perception. Participants ( n = 22) attended to one of two alternating streams of spoken numbers with open or closed eyes in a darkened chamber. After each trial, participants indicated whether probes had been among the to-be-attended or to-be-ignored numbers. In the EEG, states of relative high versus low alpha power accompanied the presentation of attended versus ignored numbers. Importantly, eye closure did not only increase the overall level of absolute alpha power but also the attentional modulation thereof. Behaviorally, however, neither perceptual sensitivity nor response criterion was affected by eye closure. To further examine whether this behavioral null result would conceptually replicate in a simple auditory detection task, a follow-up experiment was conducted that required participants ( n = 19) to detect a near-threshold target tone in noise. As in the main experiment, our results provide evidence for the absence of any difference in perceptual sensitivity and criterion for open versus closed eyes. In summary, we demonstrate here that the modulation of the human alpha rhythm by auditory attention is increased when participants close their eyes. However, our results speak against the widely held belief that eye closure per se improves listening behavior.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (5): 988–1000.
Published: 01 May 2015
FIGURES
| View All (6)
Abstract
View article
PDF
The flexible allocation of attention enables us to perceive and behave successfully despite irrelevant distractors. How do acoustic challenges influence this allocation of attention, and to what extent is this ability preserved in normally aging listeners? Younger and healthy older participants performed a masked auditory number comparison while EEG was recorded. To vary selective attention demands, we manipulated perceptual separability of spoken digits from a masking talker by varying acoustic detail (temporal fine structure). Listening conditions were adjusted individually to equalize stimulus audibility as well as the overall level of performance across participants. Accuracy increased, and response times decreased with more acoustic detail. The decrease in response times with more acoustic detail was stronger in the group of older participants. The onset of the distracting speech masker triggered a prominent contingent negative variation (CNV) in the EEG. Notably, CNV magnitude decreased parametrically with increasing acoustic detail in both age groups. Within identical levels of acoustic detail, larger CNV magnitude was associated with improved accuracy. Across age groups, neuropsychological markers further linked early CNV magnitude directly to individual attentional capacity. Results demonstrate for the first time that, in a demanding listening task, instantaneous acoustic conditions guide the allocation of attention. Second, such basic neural mechanisms of preparatory attention allocation seem preserved in healthy aging, despite impending sensory decline.